SOLUTION TO PROBLEM \#11855 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan \& Armin Straub
TAMDEBER@TULANE.EDU STRAUB@SOUTHALABAMA.EDU

Problem \#11855. Proposed by Cezar Lupu, USA. For a continuous and non-negative function f on $[0,1]$, let $\mu_{n}=\int_{0}^{1} x^{n} f(x) d x$. Show that $\mu_{n+1} \mu_{0} \geq \mu_{n} \mu_{1}$ for $n \in \mathbb{N}$.
Solution by Tewodros Amdeberhan, Tulane University; Armin Straub, University of South Alabama. Rewrite the inequality as $\int_{0}^{1} \int_{0}^{1} x^{n+1} F(x, y) d x d y-\int_{0}^{1} \int_{0}^{1} x^{n} y F(x, y) d x d y \geq 0$, with $F(x, y)=$ $f(x) f(y)$. We prove the inequality for the Riemann sum and pass on to the limit. Divide the unit square into an m^{2} grid, then select $\left(\frac{j}{m}, \frac{k}{m}\right)$ for $1 \leq j, k \leq m$ and denote $a_{j k}=F\left(\frac{j}{m}, \frac{k}{m}\right)$. Observe that $a_{j k} \geq 0$ and the symmetry $a_{j k}=a_{k j}$. For the Riemann sum, the inequality take the form

$$
\frac{1}{m^{2}} \sum_{j, k} a_{j k}\left(\frac{j}{m}\right)^{n+1}-\frac{1}{m^{2}} \sum_{j, k} a_{j k}\left(\frac{j}{m}\right)^{n}\left(\frac{k}{m}\right) \geq 0
$$

Multiplying through by m^{n+3}, we rearrange (e.g. some renaming in between) the left-hand side

$$
\begin{aligned}
\sum_{j, k} j^{n}(j-k) a_{j k} & =\sum_{j>k} j^{n}(j-k) a_{j k}+\sum_{j<k} j^{n}(j-k) a_{j k} \\
& =\sum_{j>k} j^{n}(j-k) a_{j k}+\sum_{k<j} k^{n}(k-j) a_{k j} \\
& =\sum_{j>k} j^{n}(j-k) a_{j k}+\sum_{k<j} k^{n}(k-j) a_{j k} \\
& =\sum_{j>k}(j-k)\left(j^{n}-k^{n}\right) a_{j k},
\end{aligned}
$$

which is of course non-negative. The inequality holds for all Riemann sums corresponding to m, hence it is valid the double integral as well.
Remark. The same reasoning (verbatim) captures $\mu_{n+r+s} \mu_{s} \geq \mu_{n+s} \mu_{r+s}$ for $n, r, s \in \mathbb{R}^{+}$.
Remark. Your generalization abound, let's view this as follows. For a non-negative (finite) measure ν on $S \subset \mathbb{R}$. Turn this to a probability measure $\frac{\nu(x)}{|\nu|}$ where $|\nu|=\int_{S} \nu(x)$. Now, consider the family of measure $\nu_{n}(x)=x^{n} f(x) d x$ where $f \geq 0$. Then, one interpretation of the inequality $\mu_{n+r} \nu_{0} \geq \mu_{n} \mu_{r}$ runs as follows. The $r^{t h}$-moments of the measures $\frac{\nu_{n}}{\left|\nu_{n}\right|}$ are no less than the $r^{t h}$-moments of that of $\frac{\nu_{0}}{\left|\nu_{0}\right|} ;$ i.e.

$$
\int_{S} x^{r} \frac{\nu_{n}(x)}{\left|\nu_{n}\right|} \geq \int_{S} x^{r} \frac{\nu_{0}(x)}{\left|\nu_{0}\right|}
$$

Consequently, we can say that $\frac{\nu_{0}(x)}{\left|\nu_{0}\right|}$ is absolutely continuous with respect to $\frac{\nu_{n}(x)}{\left|\nu_{n}\right|}$. This is already evident from the Radon-Nikodym derivative $\frac{d \nu_{0}}{d \nu_{n}}=x^{n}$.

