SOLUTION TO PROBLEM #11855 OF THE AMERICAN MATHEMATICAL MONTHLY

TEWODROS AMDEBERHAN & ARMIN STRAUB
TAMDEBER@TULANE.EDU STRAUB@SOUTHALABAMA.EDU

Problem #11855. Proposed by Cezar Lupu, USA. For a continuous and non-negative function f on [0,1], let $\mu_n = \int_0^1 x^n f(x) dx$. Show that $\mu_{n+1}\mu_0 \ge \mu_n \mu_1$ for $n \in \mathbb{N}$.

Solution by Tewodros Amdeberhan, Tulane University; Armin Straub, University of South Alabama. Rewrite the inequality as $\int_0^1 \int_0^1 x^{n+1} F(x,y) \, dx dy - \int_0^1 \int_0^1 x^n y \, F(x,y) \, dx dy \geq 0$, with F(x,y) = f(x)f(y). We prove the inequality for the Riemann sum and pass on to the limit. Divide the unit square into an m^2 grid, then select $(\frac{j}{m}, \frac{k}{m})$ for $1 \leq j, k \leq m$ and denote $a_{jk} = F(\frac{j}{m}, \frac{k}{m})$. Observe that $a_{jk} \geq 0$ and the symmetry $a_{jk} = a_{kj}$. For the Riemann sum, the inequality take the form

$$\frac{1}{m^2} \sum_{j,k} a_{jk} \left(\frac{j}{m}\right)^{n+1} - \frac{1}{m^2} \sum_{j,k} a_{jk} \left(\frac{j}{m}\right)^n \left(\frac{k}{m}\right) \ge 0.$$

Multiplying through by m^{n+3} , we rearrange (e.g. some renaming in between) the left-hand side

$$\sum_{j,k} j^{n}(j-k)a_{jk} = \sum_{j>k} j^{n}(j-k)a_{jk} + \sum_{j

$$= \sum_{j>k} j^{n}(j-k)a_{jk} + \sum_{k< j} k^{n}(k-j)a_{kj}$$

$$= \sum_{j>k} j^{n}(j-k)a_{jk} + \sum_{k< j} k^{n}(k-j)a_{jk}$$

$$= \sum_{j>k} (j-k)(j^{n}-k^{n})a_{jk},$$$$

which is of course non-negative. The inequality holds for all Riemann sums corresponding to m, hence it is valid the double integral as well. \square

Remark. The same reasoning (verbatim) captures $\mu_{n+r+s}\mu_s \geq \mu_{n+s}\mu_{r+s}$ for $n, r, s \in \mathbb{R}^+$.

Remark. Your generalization abound, let's view this as follows. For a non-negative (finite) measure ν on $S \subset \mathbb{R}$. Turn this to a probability measure $\frac{\nu(x)}{|\nu|}$ where $|\nu| = \int_S \nu(x)$. Now, consider the family of measure $\nu_n(x) = x^n f(x) dx$ where $f \geq 0$. Then, one interpretation of the inequality $\mu_{n+r} \nu_0 \geq \mu_n \mu_r$ runs as follows. The r^{th} -moments of the measures $\frac{\nu_n}{|\nu_n|}$ are no less than the r^{th} -moments of that of $\frac{\nu_0}{|\nu_0|}$; i.e.

$$\int_{S} x^{r} \frac{\nu_{n}(x)}{|\nu_{n}|} \ge \int_{S} x^{r} \frac{\nu_{0}(x)}{|\nu_{0}|}.$$

Consequently, we can say that $\frac{\nu_0(x)}{|\nu_0|}$ is absolutely continuous with respect to $\frac{\nu_n(x)}{|\nu_n|}$. This is already evident from the Radon-Nikodym derivative $\frac{d\nu_0}{d\nu_n} = x^n$.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX