SOLUTION TO PROBLEM \#11867 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11867. Proposed by George Apostolopoulos, Messolonghi, Greece. For real numbers a, b, c, let

$$
f(a, b, c)=\left(\frac{a^{2}}{a^{2}-a b+b^{2}}\right)^{1 / 4}
$$

Prove that $f(a, b, c)+f(b, c, a)+f(c, a, b) \leq 3$.
Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. From $(a-b)^{2} \geq 0$, we get $a^{2}-a b+b^{2} \geq a b$ and then $3\left(a^{3}+b^{3}\right) \geq 3 a b(a+b)$. So, $4\left(a^{3}+b^{3}\right) \geq a^{3}+b^{3}+3 a b(a+b)=(a+b)^{3}$. Hence $\frac{1}{a^{3}+b^{3}} \leq \frac{4}{(a+b)^{3}}$. Consequently, for the problem at hand, we obtain

$$
\sum_{c y c}\left(\frac{a^{2}}{a^{2}-a b+b^{2}}\right)^{1 / 4}=\sum_{c y c}\left(\frac{a^{2}(a+b)}{a^{3}+b^{3}}\right)^{1 / 4} \leq \sum_{c y c}\left(\frac{4 a^{2}(a+b)}{(a+b)^{3}}\right)^{1 / 4}=\sum_{c y c} \sqrt{\frac{2 a}{a+b}} .
$$

At this point, Jensen's inequality applied to the concave function $f(x)=\sqrt{x}$ effectively yields

$$
\begin{aligned}
\sum_{c y c} \sqrt{\frac{2 a}{a+b}} & =\sum_{c y c} \frac{a+c}{2(a+b+c)} \sqrt{\frac{8 a(a+b+c)^{2}}{(a+b)(a+c)^{2}}} \\
& \leq \sqrt{\sum_{c y c} \frac{a+c}{2(a+b+c)} \frac{8 a(a+b+c)^{2}}{(a+b)(a+c)^{2}}}=\sqrt{\sum_{c y c} \frac{4 a(a+b+c)}{(a+b)(a+c)}}
\end{aligned}
$$

It remains to show $\sum_{c y c} \frac{4 a(a+b+c)}{(a+b)(a+c)} \leq 9$. Clearing denominators, noting $\sum_{c y c} a(b+c)=2 \sum_{c y c} a b$, and expanding the resulting expressions, this last claim amounts to

$$
8 \sum_{c y c} a b \cdot \sum_{c y c} a \leq 9 \prod_{c y c}(a+b) \quad \Leftrightarrow \quad \sum_{c y c} c(a-b)^{2} \geq 0
$$

The above argument implicitly assumes a, b, c to be non-negative. Such is no loss of generality because for negative numbers, $f(a, b, c)$ simply becomes smaller. The proof is complete.

