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Problem #11867. Proposed by George Apostolopoulos, Messolonghi, Greece. For real numbers

a,b,c, let
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Prove that f(a,b,c)+ f(b,c,a) + f(c,a,b) < 3.
Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. From (a — b)?> > 0, we get
a? —ab+b* > ab and then 3(a® +b%) > 3ab(a +b). So, 4(a® +b®) > a® + b3 + 3ab(a +b) = (a + b)>.

Hence ﬁ < ﬁ. Consequently, for the problem at hand, we obtain
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At this point, Jensen’s inequality applied to the concave function f(z) = /x effectively yields
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It remains to show - . % < 9. Clearing denominators, noting >, .a(b+¢c) =23, ab

and expanding the resulting expressions, this last claim amounts to
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The above argument implicitly assumes a,b,c to be non-negative. Such is no loss of generality
because for negative numbers, f(a,b,c) simply becomes smaller. The proof is complete. [
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