SOLUTION TO PROBLEM \#11886 OF THE AMERICAN MATHEMATICAL MONTHLY

Problem \#11886. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Suppose $n \geq 3$, and let y_{1}, \ldots, y_{n} be a list of real numbers such that $2 y_{k+1} \leq y_{k}+y_{k+2}$ for $1 \leq k \leq n-2$. Suppose further that $\sum_{k=1}^{n} y_{k}=0$. Prove that

$$
\sum_{k=1}^{n} k^{2} y_{k} \geq(n+1) \sum_{k=1}^{n} k y_{k}
$$

and determine when equality holds.
Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Assuming n is even, the assertion is equivalent to $\sum_{k=1}^{n} k(n+1-k) y_{k}=\sum_{k=1}^{n_{*}} k(n+1-k) x_{k} \leq 0$ where $x_{k}=y_{k}+y_{n+1-k}$ and $n_{*}=\left\lfloor\frac{n}{2}\right\rfloor$. We are given (a): $\sum_{k=1}^{n_{*}} x_{k}=0$. The inequalities (b): $2 y_{k+1} \leq y_{k}+y_{k+2}$ imply $y_{k+1}-y_{k} \leq y_{k+2}-y_{k+1}$ arranged in order $1 \leq k \leq n-2$. Now, add the two central inequalities and then the four central inequalities and so on. This process yields the chain (c): $x_{n_{*}} \leq \cdots \leq x_{2} \leq x_{1}$. Due to (a), it is clear that $x_{n_{*}} \leq 0$ and $x_{1} \geq 0$. Denote $\boldsymbol{j}:=\max \left\{k: x_{k} \geq 0\right\}$ to proceed as follows. Using (a), for each $k=1,2, \ldots, \boldsymbol{j}$, in that order, make a successive substitution of $k(n+1-k) x_{k}$ by $-k(n+1-k)\left(\sum_{m=1}^{k-1} x_{m}+\sum_{m=k+1}^{n_{*}} x_{m}\right)$ into $\sum_{k=1}^{n_{*}} k(n+1-k) x_{k}$. After collecting terms together, observe that the relative difference in the coefficients remains the same with $x_{\boldsymbol{j}}$ being absent! Hence, we've (d): $\sum_{k=1}^{n_{*}} k(n+1-k) x_{k}=-\sum_{k=1}^{\boldsymbol{j}} b_{k} x_{k}+\sum_{k=\boldsymbol{j}+1}^{n_{*}} b_{k} x_{k}$ where (i) $x_{k} \geq 0, b_{k} \geq 0$ if $k<\boldsymbol{j}$; (ii) $x_{k} \leq 0, b_{k} \geq 0$ if $k>\boldsymbol{j}$. Therefore $\sum_{k=1}^{n_{*}} k(n+1-k) x_{k} \leq 0$.

In (d), if $\sum_{k=1}^{n_{*}} k(n+1-k) x_{k}=0$ then (i), (ii) and (a) imply that $y_{k}+y_{n+1-k}=x_{k}=0$ for all k. This fact, together with a comparison of dual indices in (b), shows that $2 y_{k+1} \leq y_{k}+y_{k+2}$ and $-2 y_{k+1} \leq-y_{k}-y_{k+2}$ (the latter is from $2 y_{n-k} \leq y_{n+1-k}+y_{n-k-1}$). So, $2 y_{k+1}=y_{k}+y_{k+2}$ for $1 \leq k \leq n_{*}-1$. Beginning with $2 y_{n_{*}}=y_{n_{*}-1}+y_{n_{*}+1}=y_{n_{*}-1}-y_{n_{*}}$, we get successively $y_{n_{*}-1}=3 y_{n_{*}}$ and then $y_{n_{*}-2}=5 * y_{n_{*}}, y_{n_{*}-3}=7 * y_{n_{*}}$ etc. That means equality holds in (d) iff

$$
\left[y_{1}, y_{2}, \ldots, y_{n}\right]=[n-1, n-3, \ldots, 5,3,1,-1,-3,-5, \ldots,-(n-3),-(n-1)] y_{n_{*}}
$$

A similar argument proves the case n is odd, i.e. $\sum_{k=1}^{n} k(n+1-k) y_{k} \leq 0$ and equality holds iff

$$
\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left[n_{*}, n_{*}-1, \ldots, 3,2,1,0,-1,-2,-3, \ldots,-\left(n_{*}-1\right),-n_{*}\right] y_{n_{*}} .
$$

Note. The above method of proof is elementary, constructive and doesn't rely on extra tools.

