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Problem #11890. Proposed by G. Apostolopoulos, Greece. Find all x ∈ (1,+∞) such that
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Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Standard methods evaluate the
two infinite sums (for x > 1) and the integral to yield the equation
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After combining the logarithms and simplification, we are lead to solve x4− 2x3− 2x2− 2x+ 1 = 0.

This palindrome polynomial hints at its roots: g±√g,− 1
g ± i

√
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2 . In

fact, it is easy to check that x4 − 2x3 − 2x2 − 2x + 1 = (x2 − 2gx + 1)(x2 + 2
gx + 1) = 0. Therefore,

there is a unique real number x = g +
√
g > 1 satisfying the equality in the problem. �
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