SOLUTION TO PROBLEM \#11906

Tewodros Amdeberhan \& Victor H. Moll
TAMDEBER@TULANE.EDU VHM@TULANE.EDU

Problem \#11906. Proposed by Robert Bosch, Archimedean Academy, FL. Let x, y, and z be positive numbers such that $x y z=1$. Prove

$$
\sqrt{\frac{x+1}{x^{2}-x+1}}+\sqrt{\frac{y+1}{y^{2}-y+1}}+\sqrt{\frac{z+1}{z^{2}-z+1}} \leq 3 \sqrt{2} .
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. Consider $f(x)=\frac{x+1}{x^{2}-x+1}+\log (x)-2$. We find that $f^{\prime}(x)=\frac{(x-1)\left(x^{3}-2 x^{2}-x-1\right)}{x\left(x^{2}-x+1\right)^{2}}=0$ has exactly two real solutions for $x>0$, because $g(x)=x^{3}-2 x^{2}-x-1$ has a unique positive real root according to Descartes' Rule of Signs. These roots are: $r_{1}=1$ and another $1<r_{2} \leq 3$. Therefore $\max \{f(x): 0<x \leq 3\}=\max \{f(1), f(3)\}=0$. If $x, y, z<3$ and since $x y z=1$, we obtain

$$
\sum_{c y c} \frac{x+1}{x^{2}-x+1} \leq \sum_{c y c}(2-\log x)=6 .
$$

Suppose one of the numbers, WLOG say, $x \geq 3$. In this range, the function $g(x)=\frac{x+1}{x^{2}-x+1}$ is decreasing. Also $38\left(a^{2}-a+1\right)-14(a+1)=38 a^{2}-52 x+38>0$ when $a>0$. It follows that

$$
\sum_{c y c} \frac{x+1}{x^{2}-x+1} \leq \frac{3+1}{3^{2}-3+1}+2 \cdot \frac{38}{14}=6
$$

In all cases, $\sum_{c y c} \frac{x+1}{x^{2}-x+1} \leq 6$. Cauchy-Schwarz $A a+B b+C c \leq \sqrt{\left(A^{2}+B^{2}+C^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)}$ with $A=B=C=1, a=\sqrt{\frac{x+1}{x^{2}-x+1}}, b=\sqrt{\frac{y+1}{y^{2}-y+1}}$, and $c=\sqrt{\frac{z+1}{z^{2}-z+1}}$ completes the argument

$$
\sum_{c y c} \sqrt{\frac{x+1}{x^{2}-x+1}} \leq \sqrt{3 \sum_{c y c} \frac{x+1}{x^{2}-x+1}} \leq \sqrt{3 \cdot 6}=3 \sqrt{2} .
$$

Notation. Here, $\sum_{c y c} g(x)$ means the cyclic sum $g(x)+g(y)+g(z)$.

