
SOLUTION TO PROBLEM #11924

Problem #11924. Proposed by Cornel Ioan Valean, Timis, Romania. Calculate∫ π/2
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where {u} denotes u− buc.
Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA.∫ π/2
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So, we focus on the latter integral. Substitute y = tanx so that∫ π/2
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where we compute the first sum by telescoping. Recall the infinite product
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Taking logarithms on both sides and replacing z = π gives log
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