
SOLUTION TO PROBLEM #11928

Problem #11928. Proposed by H. Ohtsuka, Japan. For positive integers n and m and for a sequence
{ai}i≥1, prove
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Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA.
(a) follows from the Vandermonde-Chu identity after the substitution i + j = k:
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(b): due to symmetry in i and j, we have
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shows that
∑
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. Furthermore, on the diagonal (across i = j) we
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∑n

j=0

(
n
j

)2(2j
n

)
=
∑n

j=0

(
n
j

)3
:= g(n) holds. This is provable by Zeilberger’s algorithm

which verifies that both f(n) and g(n) satisfy the recurrence y(0) = 1, Y (1) = 2 together with

−8(n + 1)2Y (n)− (7n2 + 21n + 16)Y (n + 1) + (n + 2)2Y (n + 2) = 0.

Thus, (b) would follow if we prove F (n) :=
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To this end, we proceed with G(n) =
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by Vandermonde-Chu.

Next, applying part (a) with ai+j =
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)
and changing indices results in
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where (2n)!(n+i)!
(n+i)!(n−i)!n!i! = (2n)!

(n−i)!n!i! = (2n)!n!
n!2(n−i)!i! has been used. So, F (n) = G(n). This completes the

proof of part (b) and the given problem. �
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