SOLUTION TO PROBLEM \#12022

Problem \#11928. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Let n be a positive integer, and let x be a real number not equal to -1 or 1 . Prove

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{\left(1-x^{n}\right)\left(1-x^{n-1}\right) \cdots\left(1-x^{n-k}\right)}{1-x^{k+1}}=n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1}(-1)^{k} \frac{\left(1-x^{n}\right)\left(1-x^{n-1}\right) \cdots\left(1-x^{n-k}\right)}{1-x^{k+1}} x^{\binom{n-1-k}{2}}=n x^{\binom{n}{2}} \tag{2}
\end{equation*}
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. First, note that identity (2) becomes (1) after replacing $x \mapsto \frac{1}{x}$ and some algebraic simplification. Let $[x]_{m}=\left(1-x^{m}\right) \cdots(1-x)$ for $m \in \mathbb{N}$ and $[x]_{0}=1$. Denote the LHS of (1) by $f_{n}(x)$. Thus

$$
\begin{aligned}
f_{n-1}-f_{n} & =\left(1-x^{n}\right) \cdots(1-x)+\sum_{k=0}^{n-1} \frac{\left(1-x^{n}\right)\left(1-x^{n-1}\right) \cdots\left(1-x^{n+1-k}\right)}{1-x^{k+1}}\left\{x^{n-k}-x^{n+1}\right\} \\
& =\left(1-x^{n}\right) \cdots(1-x)+\sum_{k=0}^{n-1} x^{n-k}\left(1-x^{n}\right) \cdots\left(1-x^{n+1-k}\right) \\
& =\sum_{k=0}^{n} x^{n-k} \frac{[x]_{n}}{[x]_{n-k}}=\sum_{k=0}^{n} x^{k} \frac{[x]_{n}}{[x]_{k}} .
\end{aligned}
$$

We induct on n to show $\sum_{k=0}^{n} \frac{x^{k}}{[x]_{k}}=\frac{1}{[x]_{n}}$. This is clear when $n=0$. Assume it holds for n. It follows that $\sum_{k=0}^{n+1} \frac{x^{k}}{[x]_{k}}=\frac{x^{n+1}}{[x]_{n+1}}+\sum_{k=0}^{n} \frac{x^{k}}{[x]_{k}}=\frac{x^{n+1}}{[x]_{n+1}}+\frac{1}{[x]_{n}}=\frac{1}{[x]_{n}}\left(\frac{x^{n+1}}{1-x^{n+1}}+1\right)=\frac{1}{[x]_{n+1}}$ justifies the claim. That means, $f_{n+1}(x)-f_{n}(x)=1$. It is easy to check $f_{1}(x)=1$. Therefore, $f_{n}(x)=n$ as desired.

