SOLUTION TO PROBLEM \#12106

Problem \#12106. Proposed by H. Ohtsuka, Japan. For any positive integer n, prove

$$
\sum_{k=1}^{n}\binom{n}{k} \sum_{1 \leq i \leq j \leq k} \frac{1}{i j}=\sum_{1 \leq i \leq j \leq n} \frac{2^{n}-2^{n-i}}{i j}
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. Denote the LHS and RHS by f_{n} and g_{n}, respectively, and induct on n. It's obvious $f_{1}=g_{1}$. Assume $f_{n}=g_{n}$. For the case $n+1$, proceed with $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$ and split the sum

$$
\begin{aligned}
f_{n+1} & =\sum_{k=1}^{n+1}\binom{n}{k} \sum_{1 \leq i \leq j \leq k} \frac{1}{i j}+\sum_{k=1}^{n+1}\binom{n}{k-1} \sum_{1 \leq i \leq j \leq k} \frac{1}{i j}=f_{n}+1+\sum_{k=1}^{n}\binom{n}{k} \sum_{1 \leq i \leq j \leq k+1} \frac{1}{i j} \\
& =2 f_{n}+1+\sum_{k=1}^{n}\binom{n}{k} \frac{1}{k+1} \sum_{i=1}^{k+1} \frac{1}{i}=2 f_{n}+\sum_{k=0}^{n}\binom{n}{k} \frac{1}{k+1} \sum_{i=1}^{k+1} \frac{1}{i} \\
& =2 f_{n}+\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} \int_{0}^{1} \frac{1-x^{k}}{1-x} d x=2 f_{n}+\frac{1}{n+1} \int_{0}^{1} \frac{d x}{1-x} \sum_{k=0}^{n}\binom{n+1}{k+1}\left(1-x^{k+1}\right) \\
& =2 f_{n}+\frac{1}{n+1} \int_{0}^{1} \frac{2^{n+1}-(1+x)^{n+1}}{1-x} d x=2 f_{n}+\frac{1}{n+1} \int_{0}^{1} \sum_{i=1}^{n+1} 2^{n+1-i}(1+x)^{i-1} d x \\
& =2 f_{n}+\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{2^{n+1}-2^{n+1-i}}{i}
\end{aligned}
$$

On the other hand, it is easy to see $g_{n+1}=2 g_{n}+\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{2^{n+1}-2^{n+1-i}}{i}$. The proof follows.

