SOLUTION TO PROBLEM \#12128

Problem \#12128. Proposed by O. Kouba, Syria. Let F_{n} be the Fibonacci numbers, defined by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$. Find, in terms of n, the number of trailing zeros in the decimal representation of F_{n}.
Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. This is actually a consequence of the result in [1], i.e.

$$
\nu_{5}\left(F_{n}\right)=\nu_{5}(n) \quad \text { and } \quad \nu_{2}\left(F_{n}\right)= \begin{cases}1 & n \equiv 3 \bmod 6 \tag{1}\\ \nu_{2}(4 n) & n \equiv 0 \bmod 6 \\ 0 & \text { otherwise }\end{cases}
$$

where $\nu_{p}(\cdots)$ denotes the p-adic valuation function. The question at hand is simply the largest power of 10 that divides F_{n}, denote this by $c(n)$. Observe that 5 divides F_{n} precisely when it divides n. Also 2 divides F_{n} when 3 divides n. Therefore $c(n)=0$ unless 15 divides n. Furthermore, $c(15 x)=1$ as soon as x is odd due to (1). The remaining case is handled by

$$
c(30 y)=\min \left\{\nu_{2}(8 y), \nu_{5}(5 y)\right\}
$$

[1] T. Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 33 (1995) 234-239.

