
SOLUTION TO PROBLEM #12249

Problem #12249. Proposed by F. Stanescu (Romania). Prove Prove
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for any positive integer n.

Solution by Tewodros Amdeberhan, Tulane University and Akalu Tefera, Grand Valley State Uni-
versity, MI , USA. Let the inner sum be F1(k,m) = (−1)m−1 k+m
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2k−m. One can check that F1(k,m) = G1(k,m+ 1)−G1(k,m). So, we get a telescop-
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Once more, its can be verified that F2(n + 1, k) − F2(n, k) = G2(n, k + 1) − G2(n, k). Now, sum
both sides over all integers k. Then, the right-hand sides adds up to zero and hence the resulting
equation becomes
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fn :=
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k=bn/2c F2(n, k) is constant. Since f1 = 0, we conclude that fn ≡ 1. The claim follows. �
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