SOLUTION TO PROBLEM \#12279

Problem \#12279. Proposed by B. Isaacson (USA). Let $S(n, k)$ denote the number of partitions of a set with n elements into k nonempty blocks. (These are the Stirling numbers of the second kind.) Let j and n be positive integers of opposite parity with $j<n$. Prove

$$
\sum_{k=j}^{n} \frac{(-1)^{k}(k-1)!\binom{k}{j} S(n, k)}{2^{k}}=0
$$

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. The convention $\binom{a}{b}=0$ if $a<b$ and multiplying by $(-2)^{n}$ (turning the sum into an integer), denote

$$
f(n, j):=\sum_{k=0}^{n}(-2)^{n-k}(k-1)!\binom{k}{j} S(n, k) .
$$

We wish to show $f(n, j)=(j-1) f(n-1, j-1)-(j+1) f(n-1, j+1)$. Using the familiar recurrence $S(n, k)=k S(n-1, k)+S(n-1, k-1)$, this amounts to

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{k!\binom{k}{j} S(n-1, k)}{(-2)^{k}}+\sum_{k=0}^{n} \frac{(k-1)!\binom{k}{j} S(n-1, k-1)}{(-2)^{k}}= & \sum_{k=0}^{n} \frac{(k-1)!\binom{k-2}{j-2} S(n-1, k-1)}{(-2)^{k}} \\
& -\sum_{k=0}^{n-1} \frac{k!\binom{k-1}{j} S(n-1, k)}{(-2)^{k}+1} .
\end{aligned}
$$

The next step is to reindex each summand to reflect a term $S(n-1, k-1)$ and collect every sum:

$$
\sum_{k=0}^{n} \frac{(k-1)!S(n-1, k-1)}{(-2)^{k}}\left[(-2)\binom{k-1}{j}+\binom{k-2}{j}-\binom{k-2}{j-2}+\binom{k}{j}\right]=0
$$

However, the entity inside the square brackets resolves to 0 , so the assertion holds true immediately. Now, consider $T_{n}:=(-1)^{n-1} \frac{d^{n-1} \tanh x}{d x^{n-1}}$. The special case $T_{2}=-\frac{d \tanh x}{d x}=-\operatorname{sech}^{2} x=-1+\tanh ^{2} x$ shows that $T_{n}=\sum_{j} b(n, j) \tanh ^{j} x$ so that $b(n, j)$ comes from that of T_{n-1} due to the derivatives of

$$
\begin{aligned}
& \frac{d\left[b(n-1, j-1) \tanh ^{j-1} x\right]}{d x}=(j-1) b(n-1, j-1)(-1+\tanh x) \tanh ^{j-2} x \\
& \frac{d\left[b(n-1, j+1) \tanh ^{j+1} x\right]}{d x}=(j+1) b(n-1, j+1)(-1+\tanh x) \tanh ^{j} x
\end{aligned}
$$

satisfying the recurrence $b(n, j)=(j-1) b(n-1, j-1)-(j+1) b(n-1, j+1)$, which agrees with that of $f(n, j)$. The boundary conditions can be easily checked to agree, too. Furthermore, there is the apparent $b(n, j)=0$ if n and j are of opposite parity which is exactly the required assertion.

