SOLUTION TO PROBLEM \#12286

Problem \#12286. Proposed by I. Gessel (USA). Let p be a prime number, and let m be a positive integer not divisible by p. Show that the coefficients of $\left(1+x+\cdots+x^{m-1}\right)^{p-1}$ that are not divisible by p are alternately 1 and -1 modulo p. For example, $\left(1+x+x^{2}+x^{3}\right)^{4} \equiv 1-x+x^{4}-x^{6}+x^{8}-x^{11}+x^{12}$ $\bmod 5$.
Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. The case $p=2$ is trivial, so assume p is odd. Notice $1+x^{m}+\cdots+x^{(p-1) m} \equiv\left(1-x^{m}\right)^{p-1} \bmod p$. Then, modulo p, we have

$$
\begin{aligned}
\left(1+x+\cdots+x^{m-1}\right)^{p-1} & =\left(\frac{1-x^{m}}{1-x}\right)^{p-1}=(1-x) \frac{\left(1-x^{m}\right)^{p-1}}{(1-x)^{p}} \equiv(1-x) \frac{1+x^{m}+\cdots+x^{(p-1) m}}{1-x^{p}} \\
& =(1-x)\left(1+x^{m}+\cdots+x^{(p-1) m}\right)\left(1+x^{p}+x^{2 p}+\cdots\right) \\
& =(1-x) \sum_{k, j} x^{m k+p j}
\end{aligned}
$$

Observe that each term $x^{m k+p j}$ appears only once since $\operatorname{gcd}(m, p)=1$ and $0 \leq k<p$. Thus, the non-vanishing summands in the above sum $\sum_{k, j}$ all have coefficients equal to 1 . Upon multiplying by $(1-x)$, the assertion follows immediately.

