SOLUTION TO PROBLEM #12287

Problem #12287. Proposed by O. Furdui and A. Sintamarian (Romania). Prove
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where ((s) is the Riemann zeta function, defined by ((s) = Y, ; .

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA.
Let Sy be the partial sums of the given series. We perform successive steps: rewrite the summands
and change the order of summation.
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where Hy = Z;\Ll % Denote HJ(\?) = Zjvzl 1. Let’s resolve the following particular term:

We apply this evaluation twice, once with £ = N and another with ¢ = k. After some routine
(though tedious) simplifications, we are lead to
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At this juncture, use Euler’s identity > po, % = 2(¢(3) and its relative >, , H}:; = ((3), also
invoke Stolz-Cesaro Theorem to the effect that
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Finally, limy_, oo Sy = ¢(2) + 2¢(3) . The proof is now complete. [J
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