SOLUTION TO PROBLEM #12293

Problem #12293. Proposed by H. Ohtsuka (Japan) and R. Tauraso (Italy). For any integer n > 1,
and any real number r > 0, prove
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Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA.
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the identity ab = (22)? — (%52)? with a = Zf o’ () and b= Z] o(=7)7 (%), we proceed as:

From Binomial Theorem,
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Successive terms in Y, _,(—1)F (Z]Ui/oﬂ) as well as in >,_, (—1)¥ (ZL(k 2 /2J) cancel pair-wise.
Assume n — 2n is even. In this case, second the double sum vanishes while the first double sum
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retains one summand (for k = 2n), i.e. (Z?:o 2 (3?)) . This agrees with (W) =
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(Z?:o r2n=2i (3?)) . The argument is similar if n — 2n + 1 is odd. This time the first dou-

ble sum vanishes while the second double sum maintains a single summand (for & = 2n + 1),
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ie. (Z?:O p2i+1 (227;_7[11)) . Again, this matches ((Hl)z +1_§(T_1)2 H) = (Z?:O p2nti=2j (27Z1)) .

The proof is now complete. [
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