
SOLUTION TO PROBLEM #12293

Problem #12293. Proposed by H. Ohtsuka (Japan) and R. Tauraso (Italy). For any integer n ≥ 1,
and any real number r > 0, prove

n∑
k=0

(−1)k

 k∑
j=0

rj
(
n

j

) k∑
j=0

(−r)j
(
n

j

) =

(
(r + 1)n + (r − 1)n

2

)2

.

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA.
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, we proceed as:
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Assume n → 2n is even. In this case, second the double sum vanishes while the first double sum

retains one summand (for k = 2n), i.e.
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. The argument is similar if n → 2n + 1 is odd. This time the first dou-
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The proof is now complete. �
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