SOLUTION TO PROBLEM \#12293

Problem \#12293. Proposed by H. Ohtsuka (Japan) and R. Tauraso (Italy). For any integer $n \geq 1$, and any real number $r>0$, prove

$$
\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{k} r^{j}\binom{n}{j}\right)\left(\sum_{j=0}^{k}(-r)^{j}\binom{n}{j}\right)=\left(\frac{(r+1)^{n}+(r-1)^{n}}{2}\right)^{2}
$$

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. From Binomial Theorem, $\frac{(r+1)^{n}+(r-1)^{n}}{2}=\sum_{j=0}^{n} \frac{r^{n-j}\binom{n}{j}+r^{n-j}(-1)^{j}\binom{n}{j}}{2}=\sum_{j=0}^{\lfloor n / 2\rfloor} r^{n-2 j}\binom{n}{2 j}$. Using the identity $a b=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}$ with $a=\sum_{j=0}^{k} r^{j}\binom{n}{j}$ and $b=\sum_{j=0}^{k}(-r)^{j}\binom{n}{j}$, we proceed as:

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k} a \cdot b & =\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{k} \frac{r^{j}\binom{n}{j}+(-r)^{j}\binom{n}{j}}{2}\right)^{2}-\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{k} \frac{r^{j}\binom{n}{j}-(-r)^{j}\binom{n}{j}}{2}\right)^{2} \\
& =\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{\lfloor k / 2\rfloor} r^{2 j}\binom{n}{2 j}\right)^{2}-\sum_{k=1}^{n}(-1)^{k}\left(\sum_{j=0}^{\lfloor(k-1) / 2\rfloor} r^{2 j+1}\binom{n}{2 j+1}\right)^{2}
\end{aligned}
$$

Successive terms in $\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=0}^{\lfloor k / 2\rfloor}\right)^{2}$ as well as in $\sum_{k=1}^{n}(-1)^{k}\left(\sum_{j=0}^{\lfloor(k-1) / 2\rfloor}\right)^{2}$ cancel pair-wise. Assume $n \rightarrow 2 n$ is even. In this case, second the double sum vanishes while the first double sum retains one summand (for $k=2 n$), i.e. $\left(\sum_{j=0}^{n} r^{2 j}\binom{2 n}{2 j}\right)^{2}$. This agrees with $\left(\frac{(r+1)^{2 n}+(r-1)^{2 n}}{2}\right)^{2}=$ $\left(\sum_{j=0}^{n} r^{2 n-2 j}\binom{2 n}{2 j}\right)^{2}$. The argument is similar if $n \rightarrow 2 n+1$ is odd. This time the first double sum vanishes while the second double sum maintains a single summand (for $k=2 n+1$), i.e. $\left(\sum_{j=0}^{n} r^{2 j+1}\binom{2 n+1}{2 j+1}\right)^{2}$. Again, this matches $\left(\frac{(r+1)^{2 n+1}+(r-1)^{2 n+1}}{2}\right)^{2}=\left(\sum_{j=0}^{n} r^{2 n+1-2 j}\binom{2 n+1}{2 j}\right)^{2}$. The proof is now complete.

