
SOLUTION TO PROBLEM #12304

Problem #12304. Proposed by M. Bataille (france). Let m and n be positive integers with m < n.
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Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA.
Replacing n by an indeterminate x, we intend to justify the equality between two rational functions
(meromorphic functions with simple poles at x = 0, 1, . . . ,m). That is to say,(
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Clearly, these simple poles are shared by both sides. Hence, it suffices to compare the coefficients
for 1

x−j for j = 0, 1, . . . ,m. Fix such j. The claim, then, amounts to
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(−1)kxk = (1− x)j , integrate both sides over the interval 0 ≤ x ≤ 1 to get
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The proof is complete. �
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