SOLUTION TO PROBLEM \#12304

Problem \#12304. Proposed by M. Bataille (france). Let m and n be positive integers with $m<n$. Prove

$$
\left(\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k}}{n-k}\right)\left(\sum_{k=0}^{m}\binom{n}{k} \frac{(-1)^{k}}{k+1}\right)=\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k}}{(n-k)(k+1)} .
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. Replacing n by an indeterminate x, we intend to justify the equality between two rational functions (meromorphic functions with simple poles at $x=0,1, \ldots, m$). That is to say,

$$
\left(\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k}}{x-k}\right)\left(\sum_{k=0}^{m}\binom{x}{k} \frac{(-1)^{k}}{k+1}\right)=\sum_{k=0}^{m}\binom{m}{k} \frac{(-1)^{k}}{(x-k)(k+1)} .
$$

Clearly, these simple poles are shared by both sides. Hence, it suffices to compare the coefficients for $\frac{1}{x-j}$ for $j=0,1, \ldots, m$. Fix such j. The claim, then, amounts to

$$
\binom{m}{j}(-1)^{j} \sum_{k=0}^{m}\binom{j}{k} \frac{(-1)^{k}}{k+1}=\binom{m}{j} \frac{(-1)^{j}}{j+1} \quad \Longleftrightarrow \quad \sum_{k=0}^{j}\binom{j}{k} \frac{(-1)^{k}}{k+1}=\frac{1}{j+1} .
$$

Starting with $\sum_{k=0}^{j}\binom{j}{k}(-1)^{k} x^{k}=(1-x)^{j}$, integrate both sides over the interval $0 \leq x \leq 1$ to get

$$
\sum_{k=0}^{j}\binom{j}{k}(-1)^{k} \int_{0}^{1} x^{k} d x=\sum_{k=0}^{j}\binom{j}{k} \frac{(-1)^{k}}{k+1}=\int_{0}^{1}(1-x)^{j} d x=\frac{1}{j+1}
$$

The proof is complete.

