SOLUTION TO PROBLEM \#12308

Problem \#12308. Proposed by Cezar Lupu (China). What is the minimum value of $\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x$ over all continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} f(x) d x=\int_{0}^{1} x^{2} f(x) d x=1$?

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Integration by parts gives $\int_{0}^{1} f(x) d x=f(1)-\int_{0}^{1} x f^{\prime}(x) d x$ and $\int_{0}^{1} x^{2} f(x) d x=\frac{1}{3} f(1)-\frac{1}{3} \int_{0}^{1} x^{3} f^{\prime}(x) d x$. Denote $c=f(1)$ as a free parameter and $g=f^{\prime}$. Restate the problem as: what is the minimum value of $\int_{0}^{1} g(x)^{2} d x$ over all continuous functions $g:[0,1] \rightarrow \mathbb{R}$ under the conditions $\int_{0}^{1} x g(x) d x=c-1$ and $\int_{0}^{1} x^{3} g(x) d x=c-3$?
Fix c. The problem is interpreted using the L^{2} inner product $\langle F, G\rangle=\int_{0}^{1} F(x) G(x) d x$. Specifically, we are given that $\langle x, g\rangle=c-1$ and $\left\langle x^{3}, g\right\rangle=c-3$, and we find the minimum value of $\langle g, g\rangle=\|g\|^{2}$. Since components of g orthogonal to both x and x^{3} will only increase the norm of g, the minimizing function must lie in the subspace spanned by x and x^{3}. Suppose $g(x)=a x+b x^{3}$. Direct calculation leads to the system: $\frac{1}{5} b+\frac{1}{3} a=c-1$ and $\frac{1}{7} b+\frac{1}{5} a=c-3$ with solutions $a=60-\frac{15}{2} c, b=\frac{35}{2} c-105$. Consequently, we obtain $\int_{0}^{1} g(x)^{2} d x=10 c^{2}-90 c+255$. Next, we minimize this quadratic expression which yields $c=\frac{9}{2}$ and thereby the required minimum becomes $\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x=\frac{105}{2}$.

Proof (Calculus of variations). Integration by parts gives $\int_{0}^{1} f(x) d x=f(1)-\int_{0}^{1} x f^{\prime}(x) d x$ and $\int_{0}^{1} x^{2} f(x) d x=\frac{1}{3} f(1)-\frac{1}{3} \int_{0}^{1} x^{3} f^{\prime}(x) d x$. Denote $c=f(1)$ as a free parameter and $g=f^{\prime}$. Restate the problem as: what is the minimum value of $\int_{0}^{1} g(x)^{2} d x$ over all continuous functions $g:[0,1] \rightarrow \mathbb{R}$ under the conditions $\int_{0}^{1} x g(x) d x=c-1$ and $\int_{0}^{1} x^{3} g(x) d x=c-3$?
Fix c. As we have two constraints, $\int_{0}^{1} f(x) d x=\int_{0}^{1} x^{2} f(x) d x=1$, we introduce two Lagrange multipliers λ and μ, and attempt to optimize the functional

$$
S[f]:=\int_{0}^{1}\left(\left(f^{\prime}(x)\right)^{2}+\lambda f(x)+\mu x^{2} f(x)\right) d x
$$

Denote the integrand by $L\left(x, f(x), f^{\prime}(x)\right)=\left(f^{\prime}(x)\right)^{2}+\lambda f(x)+\mu x^{2} f(x)$. A stationary point of the functional $S[f]$ satisfies the corresponding Euler-Lagrange equation, $\frac{\partial f}{\partial f}=\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}$, which in the present case reduces to $\lambda+\mu x^{2}=2 f^{\prime \prime}(x)$ or $f^{\prime}(x)=k+\frac{1}{2} \lambda x+\frac{1}{6} \mu x^{3}$. Fix k. Direct calculation leads to the system: $b / 30+a / 6+k / 2=c-1$ and $b / 42+a / 10+k / 4=c-3$ with the resulting solutions $a=120-45 k / 8-15 c, b=-630+105 k / 8+105 c$. Consequently, we obtain

$$
\int_{0}^{1} g(x)^{2} d x=10 c^{2}-90 c+\frac{9}{64} k^{2}+255 .
$$

We minimize this quadratic expression which yields $c=\frac{9}{2}$ and thereby $\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x=\frac{105}{2}+\frac{9}{64} k^{2}$. The required minimum values turns out to be $\frac{105}{2}$.

