SOLUTION TO PROBLEM #12308

Problem #12308. Proposed by Cezar Lupu (China). What is the minimum value of $\int_0^1 (f'(x))^2 dx$ over all continuously differentiable functions $f:[0,1]\to\mathbb{R}$ such that $\int_0^1 f(x)dx = \int_0^1 x^2 f(x)dx = 1$?

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Integration by parts gives $\int_0^1 f(x)dx = f(1) - \int_0^1 x f'(x)dx$ and $\int_0^1 x^2 f(x)dx = \frac{1}{3}f(1) - \frac{1}{3}\int_0^1 x^3 f'(x)dx$. Denote c = f(1) as a free parameter and g = f'. Restate the problem as: what is the minimum value of $\int_0^1 g(x)^2 dx$ over all continuous functions $g : [0,1] \to \mathbb{R}$ under the conditions $\int_0^1 x g(x) dx = c - 1$ and $\int_0^1 x^3 g(x) dx = c - 3$?

Fix c. The problem is interpreted using the L^2 inner product $\langle F,G\rangle=\int_0^1F(x)G(x)dx$. Specifically, we are given that $\langle x,g\rangle=c-1$ and $\langle x^3,g\rangle=c-3$, and we find the minimum value of $\langle g,g\rangle=\|g\|^2$. Since components of g orthogonal to both x and x^3 will only increase the norm of g, the minimizing function must lie in the subspace spanned by x and x^3 . Suppose $g(x)=ax+bx^3$. Direct calculation leads to the system: $\frac{1}{5}b+\frac{1}{3}a=c-1$ and $\frac{1}{7}b+\frac{1}{5}a=c-3$ with solutions $a=60-\frac{15}{2}c$, $b=\frac{35}{2}c-105$. Consequently, we obtain $\int_0^1g(x)^2dx=10c^2-90c+255$. Next, we minimize this quadratic expression which yields $c=\frac{9}{2}$ and thereby the required minimum becomes $\int_0^1(f'(x))^2dx=\frac{105}{2}$. \square

Proof (Calculus of variations). Integration by parts gives $\int_0^1 f(x)dx = f(1) - \int_0^1 x f'(x)dx$ and $\int_0^1 x^2 f(x)dx = \frac{1}{3}f(1) - \frac{1}{3}\int_0^1 x^3 f'(x)dx$. Denote c = f(1) as a free parameter and g = f'. Restate the problem as: what is the minimum value of $\int_0^1 g(x)^2 dx$ over all continuous functions $g: [0,1] \to \mathbb{R}$ under the conditions $\int_0^1 xg(x)dx = c - 1$ and $\int_0^1 x^3g(x)dx = c - 3$?

Fix c. As we have two constraints, $\int_0^1 f(x)dx = \int_0^1 x^2 f(x)dx = 1$, we introduce two Lagrange multipliers λ and μ , and attempt to optimize the functional

$$S[f] := \int_0^1 ((f'(x))^2 + \lambda f(x) + \mu x^2 f(x)) dx.$$

Denote the integrand by $L(x,f(x),f'(x))=(f'(x))^2+\lambda f(x)+\mu x^2f(x)$. A stationary point of the functional S[f] satisfies the corresponding Euler-Lagrange equation, $\frac{\partial f}{\partial f}=\frac{d}{dx}\frac{\partial L}{\partial f'}$, which in the present case reduces to $\lambda+\mu x^2=2f''(x)$ or $f'(x)=k+\frac{1}{2}\lambda x+\frac{1}{6}\mu x^3$. Fix k. Direct calculation leads to the system: b/30+a/6+k/2=c-1 and b/42+a/10+k/4=c-3 with the resulting solutions a=120-45k/8-15c, b=-630+105k/8+105c. Consequently, we obtain

$$\int_0^1 g(x)^2 dx = 10c^2 - 90c + \frac{9}{64}k^2 + 255.$$

We minimize this quadratic expression which yields $c = \frac{9}{2}$ and thereby $\int_0^1 (f'(x))^2 dx = \frac{105}{2} + \frac{9}{64}k^2$. The required minimum values turns out to be $\frac{105}{2}$. \square