SOLUTION TO PROBLEM \#12322

Problem \#12322. Proposed by A. Dzhumadil'daev (Kazakhstan). Given real numbers $x_{1}, \ldots, x_{2 n}$, let A be the skew-symmetric matrix with entries $a_{i, j}=\left(x_{j}-x_{i}\right)^{2}$ for $1 \leq i<j \leq 2 n$. Prove

$$
\begin{equation*}
\operatorname{det} A_{2 n}=4^{n-1}\left(x_{1}-x_{2}\right)^{2}\left(x_{2}-x_{3}\right)^{2} \cdots\left(x_{2 n-1}-x_{2 n}\right)^{2}\left(x_{2 n}-x_{1}\right)^{2} . \tag{1}
\end{equation*}
$$

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Let sgn be the sign function defined as: $\operatorname{sgn}(u)=1$ if $u>0 ; \operatorname{sgn}(u)=-1$ if $u<0 ; \operatorname{sgn}(0)=0$. Then, the entries of A can be given by $a_{i, j}=\operatorname{sgn}(j-i) \cdot\left(x_{j}-x_{i}\right)^{2}$, for $1 \leq i, j \leq 2 n$. It is clear that $\operatorname{det} A_{2 n}$ vanishes if $x_{i}=x_{i+1}$ for each i, with the convention that $x_{2 n+1}=x_{1}$. Hence $\left(x_{1}-x_{2}\right) \cdots\left(x_{2 n}-x_{1}\right)$ is factor of $\operatorname{det} A$. On the other hand, since $A_{2 n}$ is skew-symmetric, every factor must be a perfect square. So, indeed, $\left(x_{1}-x_{2}\right)^{2} \cdots\left(x_{2 n}-x_{1}\right)^{2}$ is factor of $\operatorname{det} A_{2 n}$. Since both sides of equation (1) are polynomials of degree $4 n$, it remains to show that they share the same constant factor. To determine this constant, choose $x_{k}=0$ for k even and $x_{k}=1$ for k odd. The right-hand side of (1) yields 4^{n-1}. In the upper triangle, the entries of $A_{2 n}$ alternate values between 0 and 1 while in the lower triangle they alternate between 0 and -1 , with 0 diagonals.
Now, add the last row to the even-numbered rows and subtract the penultimate row from the odd-numbered rows. To illustrate the procedure, take for example $2 n=6$. Then

$$
\operatorname{det} A_{6}=\operatorname{det}\left(\begin{array}{cccccc}
0 & 1 & 0 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & 0 & 1 \\
-1 & 0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
-1 & 0 & -1 & 0 & -1 & 0
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccccc}
0 & 2 & 0 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
-2 & 0 & -2 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
-1 & 0 & -1 & 0 & -1 & 0
\end{array}\right)
$$

Clearly $\operatorname{det} A_{2}=1$. For $2 n>2$, following the above procedure, proceed with Laplace expansion by the last two columns, successively, reducing the size of the matrices until one reaches the determinant of a 2×2 matrix. The result is $\operatorname{det} A_{2 n}=4^{n-1}$. The proof is now complete.

