
SOLUTION TO PROBLEM #12327

Problem #12327. Proposed by M. Merca (Romania). For n ≥ 0, prove
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Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA and Shalosh B.
Ekhad, Rutgers University, NJ, USA.
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Thus, fn+1(q) = (1 + qn+1)fn(q), gn+1(q) = (1 + qn+1)gn(q). On the other hand, it is clear that
f0(q) = g0(q) = 1. We arrive at the desired equality. Incidentally, the recurrence reveals both sum
in the problem evaluate in a closed form as (−q; q)n = (1 + q)(1 + q2) · · · (1 + qn), for n ≥ 1. �
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