SOLUTION TO PROBLEM #12349

Problem #12349. Proposed by R. Tauraso (Italy). Let A, be the set of permutations of {1,...,n}
that have at least one fixed point. For m € A,,, we write Fiz(w) for {j : 7(j) = j}. Evaluate
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Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Let D(n) be the set

of derangements on n letters. We rearrange the sum by the number k of fixed points i1, ..., ix:
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where we noted that 3, p(n) 8gn(m) = (=) Y(n—1) and if |Fiz(n)| = n — 1 then |Fiz(7)| = n,
also that Y3 —o(=1)*(".") =0. O
Lemma. Y rep(ny 890(T) = (=1)""}(n - 1).
Proof. We may interpret the sum as the determinant of an n X n matrix A, with zeros on the
main diagonal and ones everywhere else. Then A, + I, is the matrix consisting entirely of ones,

which clearly has n — 1 zero rows after row-reduction. Therefore A,, has eigenvalue —1, repeated (at

least) n — 1 times, and since trace(4,) = 0, the other eigenvalue is n — 1. So, their product gives
det(4,) = (-1)"t(n-1). O
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