SOLUTION TO PROBLEM #12364

Problem #12364. Proposed by R. Tauraso (Italy). Let n be a positive integer, and let z be a complex

number not in {—1,—2,...,—n}. Denote (Z‘) = % Hi:ol (a — 7). Prove
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Solution by Tewodros Amdeberhan, Tulane Um'versity, New Orleans, LA, USA. Rewrite the problem:
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Clearly, both sides are meromorphic functlons with poles of order two exactly at {—1,-2,...,—n}.
So, for 1 < ¢ < n, multiply through by (z + £)? and compute the values at z = —¢ to compare
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Fix ¢ and induct on n > ¢. The base case n = { is trivial (both sides on (2) equal 1). Assume (2)
holds for n. For n + 1, we use Pascal’s recurrence and the induction hypothesis to the effect
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Since Y7 (—1 )kkm("+1):01fm>0vvhlle P (-1)k L(™FY) =1 when m = 0, we gather that

) %(’;_}) ("M =r t+ T = it L. Thus (2) holds. Consequently, both sides of
equation (1) completely agree in their singularities. It remains to check (1) at, say z = 0; that is,
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Induct on n > 1. The case n = 1 is evident. Assume (3) holds for n. For n+ 1, use Pascal’s identity:
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Differentiating -+ the latter at z = 0 gives ), M Zle % =37, % Therefore,
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Combining the above Completes the induction process for (3) and the required proof follows. O
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