## SOLUTION TO PROBLEM \#12364

Problem \#12364. Proposed by R. Tauraso (Italy). Let $n$ be a positive integer, and let $z$ be a complex number not in $\{-1,-2, \ldots,-n\}$. Denote $\binom{\alpha}{k}=\frac{1}{k!} \prod_{i=0}^{k-1}(\alpha-i)$. Prove

$$
\sum_{1 \leq j \leq k \leq n} \frac{(-1)^{k-1}}{(z+j) k^{2}}\binom{z+n}{n-k}=\binom{z+n}{n} \sum_{1 \leq j \leq k \leq n} \frac{1}{(z+j)^{2} k} .
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Rewrite the problem:

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{(z+j)^{2} \prod_{i=1}^{j-1}(z+i)} \sum_{k=j}^{n} \frac{(-1)^{k-1}}{k^{2}(n-k)!} \frac{n!}{\prod_{i=j+1}^{k}(z+i)}=\sum_{j=1}^{n} \frac{1}{(z+j)^{2}} \sum_{k=j}^{n} \frac{1}{k} \tag{1}
\end{equation*}
$$

Clearly, both sides are meromorphic functions with poles of order two exactly at $\{-1,-2, \ldots,-n\}$. So, for $1 \leq \ell \leq n$, multiply through by $(z+\ell)^{2}$ and compute the values at $z=-\ell$ to compare

$$
\begin{equation*}
\sum_{k=\ell}^{n} \frac{(-1)^{k-\ell}}{k}\binom{k-1}{\ell-1}\binom{n}{k}=\sum_{k=\ell}^{n} \frac{1}{k} \tag{2}
\end{equation*}
$$

Fix $\ell$ and induct on $n \geq \ell$. The base case $n=\ell$ is trivial (both sides on (2) equal $\frac{1}{\ell}$ ). Assume (2) holds for $n$. For $n+1$, we use Pascal's recurrence and the induction hypothesis to the effect

$$
\begin{aligned}
\sum_{k=\ell}^{n+1} \frac{(-1)^{k-\ell}}{k}\binom{k-1}{\ell-1}\binom{n+1}{k} & =\sum_{k=\ell}^{n+1} \frac{(-1)^{k-\ell}}{k}\binom{k-1}{\ell-1}\binom{n}{k}+\sum_{k=\ell}^{n+1} \frac{(-1)^{k-\ell}}{k}\binom{k-1}{\ell-1}\binom{n}{k-1} \\
& =\sum_{k=\ell}^{n} \frac{1}{k}+\frac{1}{n+1} \sum_{k=1}^{n+1}(-1)^{k-\ell}\binom{k-1}{\ell-1}\binom{n+1}{k}
\end{aligned}
$$

Since $\sum_{k=1}^{n+1}(-1)^{k} k^{m}\binom{n+1}{k}=0$ if $m>0$ while $\sum_{k=1}^{n+1}(-1)^{k-1}\binom{n+1}{k}=1$ when $m=0$, we gather that $\sum_{k=\ell}^{n+1} \frac{(-1)^{k-\ell}}{k}\binom{k-1}{\ell-1}\binom{n+1}{k}=\sum_{k=\ell}^{n} \frac{1}{k}+\frac{1}{n+1}=\sum_{k=\ell}^{n+1} \frac{1}{k}$. Thus (2) holds. Consequently, both sides of equation (1) completely agree in their singularities. It remains to check (1) at, say $z=0$; that is,

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{j} \sum_{k=j}^{n} \frac{(-1)^{k-1}}{k^{2}}\binom{n}{k}=\sum_{j=1}^{n} \frac{1}{j^{2}} \sum_{k=j}^{n} \frac{1}{k}=\sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{j^{2}} \tag{3}
\end{equation*}
$$

Induct on $n \geq 1$. The case $n=1$ is evident. Assume (3) holds for $n$. For $n+1$, use Pascal's identity:

$$
\sum_{j=1}^{n+1} \frac{1}{j} \sum_{k=j}^{n+1} \frac{(-1)^{k-1}\binom{n}{k}}{k^{2}}+\sum_{j=1}^{n+1} \frac{1}{j} \sum_{k=j}^{n+1} \frac{(-1)^{k-1}\binom{n}{k-1}}{k^{2}}=\sum_{k=1}^{n} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{j^{2}}+\frac{1}{n+1} \sum_{j=1}^{n+1} \frac{1}{j} \sum_{k=j}^{n+1} \frac{(-1)^{k-1}\binom{n+1}{k}}{k}
$$

Recalling $\sum_{k=1}^{n}(-1)^{k-\ell}\binom{k-1}{\ell-1}\binom{n}{k}=1$ assures the partial fraction $\sum_{k=1}^{n} \frac{(-1)^{k-1}\binom{n}{k}}{k\binom{x+k}{k}}=\sum_{j=1}^{n} \frac{1}{x+j}$.
Differentiating $\frac{d}{d x}$ the latter at $x=0$ gives $\sum_{k=1}^{n} \frac{(-1)^{k-1}\binom{n}{k}}{k} \sum_{j=1}^{k} \frac{1}{j}=\sum_{j=1}^{n} \frac{1}{j^{2}}$. Therefore,

$$
\frac{1}{n+1} \sum_{j=1}^{n+1} \frac{1}{j} \sum_{k=j}^{n+1} \frac{(-1)^{k-1}\binom{n+1}{k}}{k}=\frac{1}{n+1} \sum_{k=1}^{n+1} \frac{(-1)^{k-1}\binom{n+1}{k}}{k} \sum_{j=1}^{k} \frac{1}{j}=\frac{1}{n+1} \sum_{j=1}^{n+1} \frac{1}{j^{2}}
$$

Combining the above completes the induction process for (3) and the required proof follows.

