
SOLUTION TO PROBLEM #12364

Problem #12364. Proposed by R. Tauraso (Italy). Let n be a positive integer, and let z be a complex

number not in {−1,−2, . . . ,−n}. Denote
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Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Rewrite the problem:
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Clearly, both sides are meromorphic functions with poles of order two exactly at {−1,−2, . . . ,−n}.
So, for 1 ≤ ` ≤ n, multiply through by (z + `)2 and compute the values at z = −` to compare
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Fix ` and induct on n ≥ `. The base case n = ` is trivial (both sides on (2) equal 1
` ). Assume (2)

holds for n. For n+ 1, we use Pascal’s recurrence and the induction hypothesis to the effect
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Since
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equation (1) completely agree in their singularities. It remains to check (1) at, say z = 0; that is,

n∑
j=1

1

j

n∑
k=j

(−1)k−1

k2

(
n

k

)
=

n∑
j=1

1

j2

n∑
k=j

1

k
=

n∑
k=1

1

k

k∑
j=1

1

j2
.(3)

Induct on n ≥ 1. The case n = 1 is evident. Assume (3) holds for n. For n+1, use Pascal’s identity:

n+1∑
j=1

1

j

n+1∑
k=j

(−1)k−1
(
n
k

)
k2

+

n+1∑
j=1

1

j

n+1∑
k=j

(−1)k−1
(
n
k−1

)
k2

=

n∑
k=1

1

k

k∑
j=1

1

j2
+

1

n+ 1

n+1∑
j=1

1

j

n+1∑
k=j

(−1)k−1
(
n+1
k

)
k

.
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Differentiating d
dx the latter at x = 0 gives
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Combining the above completes the induction process for (3) and the required proof follows. �
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