SOLUTION TO PROBLEM \#12398

Problem \#12398. Proposed by L. Glasser (USA). Evaluate

$$
\sum_{n=0}^{\infty} \frac{1}{\sinh \left(2^{n}\right)}
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Just use the definition $\frac{1}{\sinh (x)}=\frac{2}{e^{x}-e^{-x}}=\frac{2 e^{-x}}{1-e^{-2 x}}$ and the geometric series $\frac{1}{1-y}=\sum_{k \geq 0} y^{k}$ to proceed in the manner

$$
\sum_{n \geq 0} \frac{1}{\sinh \left(2^{n}\right)}=2 \sum_{n \geq 0} \frac{e^{-2^{n}}}{1-e^{2 \cdot 2^{n}}}=2 \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} e^{-2^{n}} e^{-2 k \cdot 2^{n}}=2 \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} e^{-(2 k+1) \cdot 2^{n}}
$$

Since each positive integer j can be uniquely expressed as $j=(2 k+1) 2^{n}$, we may convert the double sum into a single sum and apply the formula $\sum_{j=1}^{\infty} x^{j}=\frac{x}{1-x}$ to get

$$
\sum_{n \geq 0} \frac{1}{\sinh \left(2^{n}\right)}=2 \sum_{j=1}^{\infty} e^{-j}=\frac{2 e^{-1}}{1-e^{-1}}=\frac{2}{e-1}
$$

