SOLUTION TO PROBLEM \#12413

Problem \#12413. Proposed by Seewoo Lee, Berkeley, CA, USA. For a positive real number r, let $I_{r}=\int_{0}^{\frac{\pi}{2}} \sin ^{r} \theta d \theta$. Prove

$$
\frac{1}{(r+1)^{2}}+I_{r+1}^{2}<\left(\frac{r+3}{r+2}\right)^{2} I_{r}^{2}
$$

for all $r \geq 1$.
Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, and Akalu Tefera, Grand Valley State University, MI, USA. It is known that $I_{r}=\binom{r / 2}{1 / 2}^{-1}=\frac{\Gamma\left(\frac{r}{2}+\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{r}{2}+1\right)}$ where $\Gamma(x)$ stands for the Euler's gamma function. That means, our task reads as:

$$
\frac{1}{(r+1)^{2}}+\frac{\Gamma^{2}\left(\frac{r}{2}+1\right) \Gamma^{2}\left(\frac{3}{2}\right)}{\left(\frac{r}{2}+\frac{1}{2}\right)^{2} \Gamma^{2}\left(\frac{r}{2}+\frac{1}{2}\right)}<\left(\frac{r+3}{r+2}\right)^{2} \frac{\Gamma^{2}\left(\frac{r}{2}+\frac{1}{2}\right) \Gamma^{2}\left(\frac{3}{2}\right)}{\Gamma^{2}\left(\frac{r}{2}+1\right)} .
$$

Using $\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}$ and rearranging terms, here is an equivalent formulation

$$
\begin{equation*}
\frac{4}{\pi}(r+2)^{2} \cdot \frac{\Gamma^{2}\left(\frac{r}{2}+1\right)}{\Gamma^{2}\left(\frac{r}{2}+\frac{1}{2}\right)}+4(r+2)^{2} \cdot \frac{\Gamma^{4}\left(\frac{r}{2}+1\right)}{\Gamma^{4}\left(\frac{r}{2}+\frac{1}{2}\right)}<(r+1)^{2}(r+3)^{2} \tag{1}
\end{equation*}
$$

The gamma function is log-convex, and in fact (the Bohr-Mollerup theorem) it is the only log-convex function satisfying its recursion $\Gamma(x+1)=x \Gamma(x)$ and the initial condition $\Gamma(1)=1$. Define the function $f(y):=\log \Gamma(x+y)-y \log x$. Direct calculation shows that $f^{\prime \prime}(y) \geq 0$ (i.e. f is convex) for $y>-x$. In addition, $f(1)=\log \Gamma(x+1)-\log x=\log \Gamma(x)=f(0)$ and hence $f(y) \leq \log \Gamma(x)$ provided $0 \leq y \leq 1$. That is, $\frac{\Gamma(x+y)}{\Gamma(x)} \leq x^{y}$. Apply this result to (1) with $x=\frac{r}{2}+\frac{1}{2}$ and $y=\frac{1}{2}$:

$$
\begin{aligned}
(r+2)^{2}\left[\frac{4}{\pi} \cdot \frac{\Gamma^{2}\left(\frac{r}{2}+1\right)}{\Gamma^{2}\left(\frac{r}{2}+\frac{1}{2}\right)}+4 \cdot \frac{\Gamma^{4}\left(\frac{r}{2}+1\right)}{\Gamma^{4}\left(\frac{r}{2}+\frac{1}{2}\right)}\right] & \leq(r+2)^{2}\left[\frac{4}{\pi}\left(\frac{r}{2}+\frac{1}{2}\right)+4\left(\frac{r}{2}+\frac{1}{2}\right)^{2}\right] \\
& =(r+1)(r+2)^{2}\left[\frac{2}{\pi}+(r+1)\right]<(r+1)(r+2)^{3}
\end{aligned}
$$

where the last inequality is due to $\frac{2}{\pi}<1$. To prove (1), it suffices to test $(r+1)(r+2)^{3}<$ $(r+1)^{2}(r+3)^{2}$ which, in turn, tantamount $0<r^{2}+3 r+1$ after some reductions. The proof follows.

