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CLAIM: [P] Let k be an integer greater than 1. Then
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PROOF: The partial sum of the series in (1) can be rewritten as:
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As j runs over 1; 2; : : : ; k and n runs over 0; 1; : : : ;m� 1, the quantity kn+ j runs over the integers

1; 2; : : : ; km, each exactly once! Hence, the sum in equation (2) equals Hkm �Hm, where

HN =
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On the other hand, the Euler's constant  is given by

 = lim
m!1

(Hm � ln(m)) = lim
m!1

(Hkm � ln(km)):

This implies that
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(ln(km)� ln(m)) = ln(k):

This completes the proof. �
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