SOLUTION TO PROBLEM \#627 PROPOSED BY GEORGE MACKIW

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#627: Let x be a positive integer congruent to 1 (\bmod) 4. If n is any positive integer, show that

$$
\begin{equation*}
\sum_{k=0}^{\lfloor(n-1) / 2\rfloor}\binom{n}{2 k+1} x^{k} \quad \text { is divisible by } 2^{n-1} \tag{1}
\end{equation*}
$$

Solution: Denote the sum in (1) by $a(n)$. Then first note that it satisfies the recurrence relation

$$
\begin{equation*}
a(n+2)-2 a(n+1)-(x-1) a(n)=0 \tag{2}
\end{equation*}
$$

This is proved mechanically using the Maple package EKHAD (available at
http://www.math.temple.edu/zeilberg/programs.html). The idea: let $F(n, k):=\binom{n}{2 k+1} x^{k}$, and $G(n, k):=-\binom{n}{2 k-1} x^{k}$. Then, we have

$$
F(n+2, k)-2 F(n+1, k)-(x-1) F(n, k)=G(n, k+1)-G(n, k)
$$

Summing over k and telescoping yields the result once equation (2) is checked for $n=1,2$ (with $\mathrm{a}(1)=1, \mathrm{a}(2)=2, \mathrm{a}(3)=\mathrm{x}+3, \mathrm{a}(4)=4 \mathrm{x}+4)$.

Hence the proof of assertion (1) can be completed by induction.
This is clear for $n=1$, with $a(1)=1$. Assume it holds true for all integers $\leq n$. In particular, 2^{n-2} divides $a(n-1)$ and 2^{n-1} divides $a(n)$. Now, since $x-1$ is a multiple of 4 and we have $a(n+1)=2 a(n)+(x-1) a(n-1)$, it follows that $a(n+1)$ is divisible by 2^{n}.

References:

[P] P \#627, The College Mathematics Journal, (29) \#3, 1998.

