SOLUTION TO PROBLEM \#634
 PROPOSED BY JUAN M. MOMBELLI

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#634: Find all real-valued functions f for which there exists a real-valued function g such that $f(x+y) f(x-y)=(x-y) g(x+y)$ for all real numbers x and y.

Solution: Using the bijective transformation $u=x+y$ and $w=x-y$, the condition on f and g reads

$$
\begin{equation*}
f(u) f(w)=w g(u) \tag{1}
\end{equation*}
$$

Now, replacing $w=1$ gives $g(u)=f(1) f(u)$. With this, equation (1) takes the form

$$
f(w)=f(1) w \quad \text { and } \quad g(u)=f(1)^{2} u
$$

Consequently, the only real-valued functions fitting the desired relation are of the type

$$
f(x)=\alpha x, \quad \text { where } \alpha \text { is any constant! }
$$

References:

[$\mathbf{P}]$ P \#634, The College Mathematics Journal, (29) \#4, September 1998.

