SOLUTION TO PROBLEM \#638

PROPOSED BY MANJUL BHARGAVA

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#638: Evaluate

$$
\begin{equation*}
\sum \frac{1}{\left(a_{k},\right.}, \tag{1}
\end{equation*}
$$

where the summation ranges over all positive integers n, k with $1<k<n-1$.
Solution: First, we rewrite the sum in (1) as:

$$
\begin{equation*}
\sum \frac{1}{\binom{n}{k}}=\sum_{n=4}^{\infty} \sum_{k=2}^{n-2} \frac{1}{\binom{n}{k}}=\sum_{m=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{\binom{m+k}{k}} \tag{2}
\end{equation*}
$$

Next, we recognize that the inner sum in the last equality amounts to $\frac{2}{(m-1)(m+1)}$. This follows from (setting $a=0$)

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\binom{k}{a}}{\binom{m+k}{k}}=\frac{m(m-a-2)!a!}{(m-1)!} \tag{3}
\end{equation*}
$$

and subtracting off the first two terms, whereas the last identity is easily provable (example, by the WZ method). Finally,

$$
\sum_{m=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{\binom{m+k}{k}}=\sum_{m=2}^{\infty} \frac{2}{(m-1)(m+1)}=\frac{3}{2}
$$

where the last equality is a consequence of telescoping.

References:

[$\mathbf{P}]$ P \#638, The College Mathematics Journal, (29) \#5, November 1998.

