SOLUTION TO PROBLEM \#667 PROPOSED BY LEMMA

[P] Find the value of the integral

$$
\int_{0}^{\pi} \frac{2+2 \cos (x)-\cos ((n-1) x)-2 \cos (n x)-\cos ((n+1) x)}{1-\cos (2 x)} d x
$$

as a function of n, where n is a nonnegative integer.
Tewodros Amdeberhan, DeVry Intitute of Technology
Denote the above integral by f_{n}, and let $g_{n}:=f_{n+1}-f_{n}$ and let $h_{n}:=g_{n}-g_{n-1}$. Then, using the addition trigonometry identities
$\cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B)$ and $\sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)$ we obtain

$$
g_{n}:=\int_{0}^{\pi} \frac{2 \sin (x)[\sin ((n+1) x)+\sin (n x)]}{1-\cos (2 x)} d x \quad \text { and } \quad h_{n}:=\int_{0}^{\pi} 2 \cos (n x) d x
$$

Consequently, this implies the recurrence relations

$$
h_{n}=0, \quad g_{n}=\pi \quad \text { for } \quad n \geq 1
$$

with initial conditions

$$
g_{1}=\pi, \quad f_{1}=\pi
$$

Therefore, $f_{n}=n \pi, n \geq 1$. The case $n=0$ is obvious.

References:

[P] P \#667, The College Mathematics Journal, (31) \#1, January 2000.

