AN INTEGRAL OF CHOI KWOK PUI APPEARING IN A POISSON PROCESS APPROXIMATION

In the calculation of an immigration-death process, close to a Poisson process, it was needed to evaluate the expectation

$$
\int_{0}^{\infty} e^{-t} E\left(\frac{1}{Y(t)+Z(t)+1}\right) d t
$$

where $Y(t)$ and $Z(t)$ are independent, $Y(t)$ is distributed as $\operatorname{Binomial}\left(m, e^{-t}\right)$ and $Z(t)$ is Poisson distributed with mean $\lambda\left(1-e^{-t}\right)$. This leads to the evaluation of the double integral

$$
\begin{equation*}
F(\lambda, m)=\int_{0}^{1} \int_{0}^{1}(1-r+u r)^{m} e^{-\lambda u r} d u d r \tag{1}
\end{equation*}
$$

Here $m \in \mathbb{N}$ and $\lambda \in \mathbb{R}^{+}$.
The integral is given by
(2) $F(\lambda, m)=\frac{m!}{\lambda^{m+1}}\left[\left(\sum_{k=0}^{m} \frac{\lambda^{k}}{k!}\right) \times \int_{0}^{1} \frac{1-e^{-\lambda r}}{r} d r+\sum_{k=0}^{m-1} \frac{\lambda^{k}}{k!} \sum_{\nu=1}^{m-k} \frac{(-\lambda)^{\nu}}{\nu \nu!}\right]$.

The integral appearing in (2) is evaluated by Mathematica as

$$
\begin{equation*}
\int_{0}^{1} \frac{1-e^{-\lambda r}}{r} d r=\gamma+\ln \lambda+\Gamma(0, \lambda) \tag{3}
\end{equation*}
$$

where γ is the Euler constant

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty} 1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n \sim 0.577215 \tag{4}
\end{equation*}
$$

and $\Gamma(0, x)$ is the incomplete gamma function defined by

$$
\begin{equation*}
\Gamma(0, x) \quad:=\int_{x}^{\infty} \frac{e^{-t}}{t} d t \tag{5}
\end{equation*}
$$

The sum appearing in the first term in (2) can be expressed as

$$
\begin{equation*}
\sum_{k=0}^{m} \frac{\lambda^{k}}{k!}=\frac{e^{\lambda}}{m!} \Gamma(m+1, \lambda) \tag{6}
\end{equation*}
$$

so that

$$
F(\lambda, m)=\frac{e^{\lambda}}{\lambda^{m+1}} \Gamma(m+1, \lambda)[\gamma+\Gamma(0, \lambda)+\ln \lambda]+\frac{m!}{\lambda^{m+1}} \sum_{k=0}^{m-1} \frac{\lambda^{k}}{k!} \sum_{\nu=1}^{m-k} \frac{(-\lambda)^{\nu}}{\nu \nu!} .
$$

General information about this function can be obtained in [2], Chapter 45.

To evaluate the function $F(\lambda, m)$, let $v=1-u$ and expand the term $(1-r v)^{m}$ to obtain

$$
\begin{equation*}
F(\lambda, m)=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} \int_{0}^{1} r^{m-k} e^{-\lambda r} \int_{0}^{1} e^{\lambda v r} v^{m-k} d v d r . \tag{7}
\end{equation*}
$$

Now

$$
\begin{equation*}
\int_{0}^{1} e^{\lambda v r} v^{m-k} d v=\lambda^{-m-1+k} r^{-m-1+k} \int_{0}^{\lambda r} x^{m-k} e^{x} d x \tag{8}
\end{equation*}
$$

The indefinite integral of $x^{m-k} e^{x}$ can be obtained by repeated integration by parts and it can be found in [1], 2.321.2:

$$
\begin{equation*}
\int x^{m-k} e^{x} d x=e^{x} \sum_{j=0}^{m-k} \frac{(-1)^{j}(m-k)!}{(m-k-j)!} x^{m-k-j} \tag{9}
\end{equation*}
$$

The formula (2) appears directly from here. In the sum (7) one should combine the term corresponding to $k=m$ with the inner term corresponding to $j=m-k$ to produce terms involving the integrand $\left(1-e^{-\lambda r}\right) / r$. These are integrable near $r=0$.

The function $F(\lambda, m)$ can be simplified even further using

$$
\begin{aligned}
\sum_{k=0}^{m-1} \sum_{j=1}^{m-k} \frac{(-1)^{j} \lambda^{k+j}}{j j!k!} & =\sum_{j+k \leq m} \frac{(-1)^{j} \lambda^{k+j}}{j j!k!} \\
& =\sum_{r=1}^{m} \sum_{j=1}^{r} \frac{(-1)^{j} \lambda^{r}}{j j!(r-j)!} \\
& =\sum_{r=1}^{m} \frac{\lambda^{r}}{r!} \sum_{j=1}^{r} \frac{(-1)^{j}}{j}\binom{r}{j} \\
& =\sum_{r=1}^{m} \frac{\lambda^{r}}{r!} \sum_{j=1}^{r} \frac{1}{j} \\
& =\sum_{r=1}^{m} \frac{\lambda^{r} H_{r}}{r!}
\end{aligned}
$$

where $H_{r}=1+1 / 2+\cdots+1 / r$ is the harmonic number. Therefore

$$
F(\lambda, m)=\frac{e^{\lambda}}{\lambda^{m+1}} \Gamma(m+1, \lambda)[\gamma+\Gamma(0, \lambda)+\ln \lambda]+\frac{m!}{\lambda^{m+1}} \sum_{r=1}^{m} \frac{\lambda^{r} H_{r}}{r!}
$$

References

[1] I.S. Gradshteyn - I.M. Rhyzik: Tables of Integrals, Series and Products, 6th edition, Alan Jeffrey and D. Zwillinger editors, Academic Press, 2000.
[2] J. Spanier - K. Oldham: em An atlas of functions. Springer-Verlag, 1987.

