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Prime factorization

Proposition

Assume n ∈ N has no prime factor ≤
√

n.
Then n is prime.

Proof.
If n = a · b with a, b >

√
n.

Then a · b > n.
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Fundamental theorem of Arithmetic

Theorem
Every n ∈ N has a unique factorization as a product of primes.

Proof.
Existence: every n ∈ N has a prime divisor p.

Write n = p · n1 and continue by induction.
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Fundamental theorem of Arithmetic. Continuation

Uniqueness: assume n ∈ N is minimal with two factorizations:

Proof.

n = p1p2 · · · pk = q1q2 · · · qr

p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ qr

Assume pi 6= qj .

n − p1q1 > 0

p1 divides n − p1q1

n − p1q1 = p1m so q1 divides m
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q1 divides p2p3 · · · pk < n
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Q is countable

Exercise
Check the details of the following proof that Q is countable.

m = pe1

1
· · · per

r and n = qf1
1
· · · qfk

k

define

T
(m

n

)

= p2e1

1
p2e2

2
· · · p2er

r q2f1−1

1
q2f2−1

2
· · · q2fk−1

k

a) Find T (123456).
b) Which x ∈ Q gives T (x) = 1221.
c) Prove that T is one-to-one and onto.
d) What does it mean to be countable?
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