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Proposition
Assume n € N has no prime factor < \/n.
Then n is prime.

Proof.
If n=a-bwith a, b > /n.
Then a-b > n.
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Fundamental theorem of Arithmetic

Theorem
Every n € N has a unique factorization as a product of primes.

Proof.

Existence: every n € N has a prime divisor p.

Write n = p - n; and continue by induction.
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Fundamental theorem of Arithmetic. Continuation

Uniqueness: assume n € N is minimal with two factorizations:

Proof.

n=pip2---Pk=4g1q2---qr
pr<pp<--<prand g <@ <---<qr
Assume p; # q;.

n—pigr >0
p1 divides n — p1q1

n— p1q1 = pi1mso i divides m
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Fundamental theorem of Arithmetic. Continuation

Proof.

p1gimiy = n— pi1qi

p1gimy = p1(pP2p3 - Pk — q1)

qmy = p2p3--- Pk —q1

g1 divides pop3 - - pe < n

Contradiction to unique factorization.
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Exercise
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Q is countable

Exercise
Check the details of the following proof that QQ is countable.

m:pflpfr andn:q{l...qzk

define

m L 4 fi=
T (;) = praple e 2hi-l2hol 2]
a) Find T(123456).
b) Which x € Q gives T(x) = 1221.
¢) Prove that T is one-to-one and onto.
d) What does it mean to be countable?



