Number Theory. Class 2

Victor H. Moll Tulane University

January 16, 2008

Proposition

Assume $n \in \mathbb{N}$ has no prime factor $\leq \sqrt{n}$

Then n is prime.

Proof. If $n = a \cdot b$ with $a, b > \sqrt{2}$

Proposition

Assume $n \in \mathbb{N}$ has no prime factor $\leq \sqrt{n}$.

Then n is prime.

Proof. If $n = a \cdot b$ with $a, b > \sqrt{n}$ Then $a \cdot b > n$.

Proposition

Assume $n \in \mathbb{N}$ has no prime factor $\leq \sqrt{n}$. Then n is prime.

From: If $n = a \cdot b$ with $a, b > \sqrt{n}$. Then $a \cdot b > n$.

Proposition

Assume $n \in \mathbb{N}$ has no prime factor $\leq \sqrt{n}$. Then n is prime.

Proof. If $n = a \cdot b$ with $a, b > \sqrt{n}$.

Then $a \cdot b > n$.

Proposition

Assume $n \in \mathbb{N}$ has no prime factor $\leq \sqrt{n}$. Then n is prime.

Proof.

If $n = a \cdot b$ with $a, b > \sqrt{n}$. Then $a \cdot b > n$.

l heorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of primes.

Proof

Existence: every $n \in \mathbb{N}$ has a prime divisor p.

Write $n = p \cdot n_1$ and continue by induction

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of primes.

<ロ> < 回> < 三> < 三> < 三> < 三> < 三</p>

Proof.

Existence: every $n \in \mathbb{N}$ has a prime divisor p

Write $n = p \cdot n_1$ and continue by induction

Theorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of primes.

Proof.

Existence: every $n \in \mathbb{N}$ has a prime divisor p.

Write $n = p \cdot n_1$ and continue by induction

Theorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of primes.

Proof.

Existence: every $n \in \mathbb{N}$ has a prime divisor p.

Write $n = p \cdot n_1$ and continue by induction.

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations

Proof.

 $n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_k$

Assume $p_i \neq q_j$.

 $n-p_1q_1>0$

 p_1 divides $n - p_1 q_1$

 $n - p_1 q_1 = p_1 m$ so q_1 divides m

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations:

Proof.

 $n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_k$

Assume $p_i \neq q_j$.

 $n-p_1q_1>0$

 p_1 divides $n - p_1 q_1$

 $p_1 + p_1 q_1 = p_1 m$ so q_1 divides m

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations:

Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_k$

Assume $p_i \neq q_j$.

$$n-p_1q_1>0$$

 p_1 divides $n - p_1 q_1$

 $n - p_1 q_1 = p_1 m$ so q_1 divides m

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations: Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_r$

 $n - \rho_1 q_1 >$

 p_1 divides $n = p_1 q$

 $p - p_1 q_1 = p_1 m$ so q_1 divides n

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations: Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_r$

Assume $p_i \neq q_j$.

 $(-p_1q_1>0)$

 p_1 divides $n - p_1 q$

 $p - p_1 q_1 = p_1 m$ so q_1 divides n

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations: Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

 $p_1 \leq p_2 \leq \cdots \leq p_k$ and $q_1 \leq q_2 \leq \cdots \leq q_r$

Assume $p_i \neq q_j$.

 $n-p_1q_1>0$

 p_1 divides $n - p_1 q$

 $p_1 + p_1 q_1 = p_1 m$ so q_1 divides n

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations: Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

$$p_1 \leq p_2 \leq \cdots \leq p_k$$
 and $q_1 \leq q_2 \leq \cdots \leq q_r$

Assume $p_i \neq q_j$.

$$n-p_1q_1>0$$

 p_1 divides $n - p_1 q_1$

 $-p_1q_1 = p_1m$ so q_1 divides n

Uniqueness: assume $n \in \mathbb{N}$ is minimal with two factorizations: Proof.

$$n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

$$p_1 \leq p_2 \leq \cdots \leq p_k$$
 and $q_1 \leq q_2 \leq \cdots \leq q_r$

Assume $p_i \neq q_j$.

$$n - p_1 q_1 > 0$$

 p_1 divides $n - p_1 q_1$

 $n - p_1 q_1 = p_1 m$ so q_1 divides m

 $p_1q_1m_1=n-p_1q_1$

 $p_1q_1m_1 = p_1(p_2p_3\cdots p_k - q_1)$

 $q_1m_1 = p_2p_3\cdots p_k - q_1$

 q_1 divides $p_2 p_3 \cdots p_k < r$

Contradiction to unique factorizatior

Proof.

 $p_1q_1m_1=n-p_1q_1$

 $p_1q_1m_1=p_1(p_2p_3\cdots p_k-q_1)$

11...1 24.2

 q_1 divides $p_2 p_3 \cdots p_k < r$

Contradiction to unique factorizatior

Proof.

 $p_1q_1m_1=n-p_1q_1$

$$p_1q_1m_1=p_1(p_2p_3\cdots p_k-q_1)$$

 $q_1m_1=p_2p_3\cdots p_k-q_1$

 p_1 divides $p_2 p_3 \cdots p_k < 1$

Contradiction to unique factorizatior

Proof.

 $p_1q_1m_1=n-p_1q_1$

$$p_1q_1m_1=p_1(p_2p_3\cdots p_k-q_1)$$

$$q_1m_1=p_2p_3\cdots p_k-q_1$$

 q_1 divides $p_2 p_3 \cdots p_k < n$

Contradiction to unique factorization

Proof.

 $p_1q_1m_1=n-p_1q_1$

$$p_1q_1m_1=p_1(p_2p_3\cdots p_k-q_1)$$

$$q_1m_1=p_2p_3\cdots p_k-q_1$$

 q_1 divides $p_2 p_3 \cdots p_k < n$

Contradiction to unique factorization.

Exercise

Check the details of the following proof that ${\mathbb Q}$ is countable.

 $m=p_1^{e_1}\cdots p_r^{e_r}$ and $n=q_1^{f_1}\cdots q_k^{f_k}$

define

 $T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k}$

a) Find T(123456).

b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto.

d) What does it mean to be countable?

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

 $\mathcal{T}\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k}$

a) Find T(123456)

b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto.

d) What does it mean to be countable?

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

$$T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k-1}$$

a) Find T (123456)

b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

$$T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k-1}$$

a) Find T(123456).

- b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.
- c) Prove that T is one-to-one and onto.
- d) What does it mean to be countable?

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

$$T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k-1}$$

a) Find T(123456).

b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto.

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

$$T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k-1}$$

a) Find T(123456).

b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto.

Exercise

Check the details of the following proof that \mathbb{Q} is countable.

$$m = p_1^{e_1} \cdots p_r^{e_r}$$
 and $n = q_1^{f_1} \cdots q_k^{f_k}$

define

$$T\left(\frac{m}{n}\right) = p_1^{2e_1} p_2^{2e_2} \cdots p_r^{2e_r} q_1^{2f_1-1} q_2^{2f_2-1} \cdots q_k^{2f_k-1}$$

a) Find T(123456). b) Which $x \in \mathbb{Q}$ gives T(x) = 1221.

c) Prove that T is one-to-one and onto.