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Unique factorization

Theorem
Every n € N has a unique factorization in the form

ap ay

n=pi'ps’ - py
We may always assume: p; < pp < --- < py.
Meaning of uniqueness: if

ai a2

NEEEEE AT
PI' PSP =Gridy s

then r = s and

pi=gqgiforl<i<randa; =b;forl<i<r.
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Determination of factors

Theorem

Given
a1 ,.a» ar

n =t pl p2 ... pr
then m divides n if and only if

b by

with 0 < b; < a;.
In particular, p1, p2,--- , pr are the only primes that divide n.

Proof.

Assume m divides n and write n = m x my.

G 2

Suppose m = q7'q;° - - - q¢', then

ap ..a ar __ ca G C
Py Py Py =qy gy gt X omy.

We conclude that every g; must equal one of the p;. Done.
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m? = 2n°
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Irrationality proof. Continuation

Proof.

Introduce the prime factorization

m = p{*p3®---p¥ and n = q* g3 g2
with p; # q; and the primes are ordered.

2a] 282 r 2 2b] 2b2 s
p p plza q q52b

2 r b S

2a 1p232 p 2a q2 il q q2b

Therefore g1 = 2. Contradiction.
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Theorem
Let n € N. Then

. n
vp(n!) = ZL_;(J
1 P
and also

n — Sp(n)
p—1
where Sp(n) is the sum of the digits of n written in base p.

vp(nl) =



