Number Theory. Class 3

Victor H. Moll Tulane University

January 22, 2008

Theoren

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$= p_1^{a_1} p_2^{a_2} \cdots p_r^a$$

We may always assume: $p_1 < p_2 < \cdots < p_r$

Meaning of uniqueness: if

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$

Meaning of uniqueness: if

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 < i < r$ and $a_i = b_i$ for $1 < i < r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$

Meaning of uniqueness: if

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$.

Meaning of uniqueness: it

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$.

Meaning of uniqueness: if

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{b_1}q_2^{b_2}\cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$.

Meaning of uniqueness: if

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{b_1}q_2^{b_2}\cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$

Theorem

Every $n \in \mathbb{N}$ has a unique factorization in the form

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

We may always assume: $p_1 < p_2 < \cdots < p_r$.

Meaning of uniqueness: if

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{b_1}q_2^{b_2}\cdots q_s^{b_s}$$

$$p_i = q_i$$
 for $1 \le i \le r$ and $a_i = b_i$ for $1 \le i \le r$.

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

$$p_{i}^{a_1}$$
 $p_{i}^{a_2}$ \dots $p_{i}^{a_r}$ $=$ $q_{i}^{c_1}$ $q_{i}^{c_2}$ \dots $q_{i}^{c_r}$ \times m_1

We conclude that every q_i must equal one of the p_i . Done

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{c_1} q_2^{c_2} \cdots q_r^{c_r} \times m_1$$

We conclude that every q_i must equal one of the p_i . Done

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

$$p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{c_1} q_2^{c_2} \cdots q_r^{c_r} \times m_1$$
.

We conclude that every q_i must equal one of the p_i . Done.

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

$$q_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{c_1} q_2^{c_2} \cdots q_5^{c_r} \times m_1.$$

We conclude that every q_i must equal one of the p_i . Done

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

$$q_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} = q_1^{c_1} q_2^{c_2} \cdots q_5^{c_r} \times m_1.$$

We conclude that every q_i must equal one of the p_i . Done.

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_5^{c_r} imes m_1.$$

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

Proof.

$$ho_1^{a_1}
ho_2^{a_2}\cdots
ho_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_s^{c_r} imes m_1$$

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

Proof.

Assume m divides n and write $n = m \times m_1$.

$$ho_1^{a_1}
ho_2^{a_2}\cdots
ho_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_5^{c_r} imes m_1$$

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

Proof.

Assume m divides n and write $n = m \times m_1$.

Suppose $m = q_1^{c_1} q_2^{c_2} \cdots q_s^{c_r}$, then

$$ho_1^{a_1}
ho_2^{a_2}\cdots
ho_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_s^{c_r} imes m_1$$

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

Proof.

Assume m divides n and write $n = m \times m_1$.

Suppose $m = q_1^{c_1} q_2^{c_2} \cdots q_s^{c_r}$, then

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_s^{c_r} imes m_1.$$

Theorem

Given

$$n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$$

then m divides n if and only if

$$m=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

with $0 < b_i < a_i$.

In particular, p_1, p_2, \dots, p_r are the only primes that divide n.

Proof.

Assume m divides n and write $n = m \times m_1$.

Suppose $m = q_1^{c_1} q_2^{c_2} \cdots q_s^{c_r}$, then

$$p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}=q_1^{c_1}q_2^{c_2}\cdots q_s^{c_r}\times m_1.$$

We conclude that every q_i must equal one of the p_i . Done.

Assume
$$\sqrt{2} = m/$$

$$m^2 = 2n$$

Theorem $\sqrt{2} \notin \mathbb{Q}$

Proof.

Assume $\sqrt{2} = m/$

$$m^2 = 2n$$

Theorem
$$\sqrt{2} \notin \mathbb{Q}$$

Proof.

Assume $\sqrt{2} = m/n$

$$m^2 = 2n^2$$

Theorem
$$\sqrt{2} \notin \mathbb{Q}$$

Proof.

Assume $\sqrt{2} = m/n$

$$m^2=2n^2$$

Proof

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered

$$p_1^{2a_1} p_2^{2a_2} \cdots p_r^{2a_r} = 2q_1^{2b_1} q_2^{2b_2} \cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered.

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered.

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered.

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered.

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Proof.

Introduce the prime factorization

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
 and $n = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$

with $p_i \neq q_j$ and the primes are ordered.

$$p_1^{2a_1}p_2^{2a_2}\cdots p_r^{2a_r}=2q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Therefore $p_1 = 2$

$$2^{2a_1-1}p_2^{2a_2}\cdots p_r^{2a_r}=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$$

Theorem

Let $n \in \mathbb{N}$. Then

$$\nu_{\rho}(n!) = \sum_{k=1}^{n} \lfloor \frac{n}{p^k} \rfloor$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$

Theorem Let $n \in \mathbb{N}$. Then

$$\nu_p(n!) = \sum_{k=1}^{n} \frac{n}{p^k}$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$

Theorem Let $n \in \mathbb{N}$. Then

$$\nu_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$

Theorem Let $n \in \mathbb{N}$. Then

$$\nu_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$

Theorem Let $n \in \mathbb{N}$. Then

$$\nu_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$

Theorem Let $n \in \mathbb{N}$. Then

$$\nu_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$$

and also

$$\nu_p(n!) = \frac{n - S_p(n)}{p - 1}$$