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ABSTRACT. Landen transformations are maps on the coefficients of an inte-

gral that preserve its value. We present a brief survey of their appearance in

the literature.

1. In the beginning there was Gauss

In the year 1985, one of us had the luxury of attending a graduate course on

Elliptic Functions given by Henry McKean at the Courant Institute. Among the

many beautiful results he described in his unique style, there was a calculation

of Gauss: take two positive real numbers a and b, with a > b, and form a new

pair by replacing a with the arithmetic mean .aCb/=2 and b with the geometric

mean
p

ab. Then iterate:

anC1 D
anC bn

2
; bnC1 D

p

anbn (1-1)

starting with a0 D a and b0 D b. Gauss [1799] was interested in the initial

conditions aD 1 and b D
p

2. The iteration generates a sequence of algebraic

numbers which rapidly become impossible to describe explicitly; for instance,

a3 D
1

23

�

.1C 4
p

2/2C 2
p

2
8
p

2
p

1C
p

2
�

(1-2)

is a root of the polynomial

G.a/D 16777216a8 � 16777216a7C 5242880a6� 10747904a5

C 942080a4� 1896448a3C 4436a2� 59840aC 1:
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The numerical behavior is surprising; a6 and b6 agree to 87 digits. It is simple

to check that

lim
n!1

an D lim
n!1

bn: (1-3)

See (6-1) for details. This common limit is called the arithmetic-geometric

mean and is denoted by AGM.a; b/. It is the explicit dependence on the initial

condition that is hard to discover.

Gauss computed some numerical values and observed that

a11 � b11 � 1:198140235; (1-4)

and then he recognized the reciprocal of this number as a numerical approxima-

tion to the elliptic integral

I D 2

�

Z 1

0

dtp
1� t4

: (1-5)

It is unclear to the authors how Gauss recognized this number: he simply knew

it. (Stirling’s tables may have been a help; [Borwein and Bailey 2003] contains a

reproduction of the original notes and comments.) He was particularly interested

in the evaluation of this definite integral as it provides the length of a lemniscate.

In his diary Gauss remarked, ‘This will surely open up a whole new field of

analysis’ [Cox 1984; Borwein and Borwein 1987].

Gauss’ procedure to find an analytic expression for AGM.a; b/ began with

the elementary observation

AGM.a; b/D AGM

�

aC b

2
;
p

ab

�

(1-6)

and the homogeneity condition

AGM.�a; �b/D �AGM.a; b/ : (1-7)

He used (1-6) with a D .1C
p

k/2 and b D .1 �
p

k/2, with 0 < k < 1, to

produce

AGM.1C kC 2
p

k; 1C k � 2
p

k/D AGM.1C k; 1� k/: (1-8)

He then used the homogeneity of AGM to write

AGM.1CkC2
p

k; 1Ck�2
p

k/D AGM
�

.1Ck/.1Ck�/; .1Ck/.1�k�/
�

D .1Ck/AGM.1Ck�; 1�k�/;

with

k� D 2
p

k

1C k
: (1-9)
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This resulted in the functional equation

AGM.1C k; 1� k/D .1C k/AGM.1C k�; 1� k�/: (1-10)

In his analysis of (1-10), Gauss substituted the power series

1

AGM.1C k; 1� k/
D

1
X

nD0

ank2n (1-11)

into (1-10) and solved an infinite system of nonlinear equations to produce

an D 2�2n

�

2n

n

�2

: (1-12)

Then he recognized the series as that of an elliptic integral to obtain

1

AGM.1C k; 1� k/
D 2

�

Z �=2

0

dx
p

1� k2 sin2 x
: (1-13)

This is a remarkable tour de force.

The function

K.k/D
Z �=2

0

dx
p

1� k2 sin2 x
(1-14)

is the elliptic integral of the first kind. It can also be written in the algebraic

form

K.k/D
Z 1

0

dt
p

.1� t2/.1� k2t2/
: (1-15)

In this notation, (1-10) becomes

K.k�/D .1C k/K.k/: (1-16)

This is the Landen transformation for the complete elliptic integral. John

Landen [1775], the namesake of the transformation, studied related integrals:

for example,

� W D
Z 1

0

dx
p

x.1�x2/
: (1-17)

He derived identities such as

� D "C
p

"2�� ; where " W D
Z �=2

0

p

2� sin2 � d� ; (1-18)

proven mainly by suitable changes of variables in the integral for ". In [Watson

1933] the reader will find a historical account of Landen’s work, including the

above identities.
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The reader will find in [Borwein and Borwein 1987] and [McKean and Moll

1997] proofs in a variety of styles. In trigonometric form, the Landen transfor-

mation states that

G.a; b/D
Z �=2

0

d�
p

a2 cos2 � C b2 sin2 �
(1-19)

is invariant under the change of parameters

.a; b/‘
�

aCb

2
;
p

ab

�

:

D. J. Newman [1985] presents a very clever proof: the change of variables

x D b tan � yields

G.a; b/D 1

2

Z 1

�1

dx
p

.a2Cx2/.b2Cx2/
: (1-20)

Now let x‘xC
p

x2C ab to complete the proof. Many of the above identities

can now be searched for and proven on a computer [Borwein and Bailey 2003].

2. An interlude: the quartic integral

The evaluation of definite integrals of rational functions is one of the standard

topics in Integral Calculus. Motivated by the lack of success of symbolic lan-

guages, we began a systematic study of these integrals. A posteriori, one learns

that even rational functions are easier to deal with. Thus we start with one having

a power of a quartic in its denominator. The evaluation of the identity

Z 1

0

dx

.x4C 2ax2C 1/mC1
D �

2mC3=2 .aC 1/mC1=2
Pm.a/; (2-1)

where

Pm.a/D
m
X

lD0

dl.m/a
l (2-2)

with

dl.m/D 2�2m
m
X

kDl

2k

�

2m� 2k

m� k

��

mC k

m

��

k

l

�

; (2-3)

was first established in [Boros and Moll 1999b].

A standard hypergeometric argument yields

Pm.a/D P .˛;ˇ/
m .a/; (2-4)
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where

P .˛;ˇ/
m .a/D

m
X

kD0

.�1/m�k

�

mCˇ
m� k

��

mC kC˛Cˇ
k

�

2�k.aC 1/k (2-5)

is the classical Jacobi polynomial; the parameters ˛ and ˇ are given by ˛DmC1
2

and ˇD �m� 1
2

. A general description of these functions and their properties

are given in [Abramowitz and Stegun 1972]. The twist here is that they depend

on m, which means most of the properties of Pm had to be proven from scratch.

For instance, Pm satisfies the recurrence

Pm.a/D
.2m� 3/.4m� 3/a

4m.m� 1/.a� 1/
Pm�2.a/�

.4m� 3/a.aC 1/

2m.m� 1/.a� 1/
P 0

m�2.a/

C 4m.a2� 1/C 1� 2a2

2m.a� 1/
Pm.a/:

This cannot be obtained by replacing ˛DmC 1
2

and ˇD�m� 1
2

in the standard

recurrence for the Jacobi polynomials. The reader will find in [Amdeberhan and

Moll 2007] several different proofs of (2-1).

The polynomials Pm.a/ makes a surprising appearance in the expansion

q

aC
p

1C c D
p

aC 1

�

1�
1
X

kD1

.�1/k

k

Pk�1.a/ ck

2kC1 .aC 1/k

�

(2-6)

as described in [Boros and Moll 2001a]. The special case a D 1 appears in

[Bromwich 1926], page 191, exercise 21. Ramanujan had a more general ex-

pression, but only for the case c D a2:

.aC
p

1C a2/n D 1C naC
1
X

kD2

bk.n/a
k

k!
; (2-7)

where, for k � 2,

bk.n/D
�

n2.n2� 22/.n2� 42/ � � � .n2� .k � 2/2/ if k is even,

n.n2� 12/.n2� 32/ � � � .n2� .k � 2/2/ if k is odd.
(2-8)

This result appears in [Berndt and Bowman 2000] as Corollary 2 to Entry 14

and is machine-checkable, as are many of the identities in this section.

The coefficients dl.m/ in (2-3) have many interesting properties:

� They form a unimodal sequence: there exists an index 0�m� �m such that

dj .m/ increases up to j D m� and decreases from then on. See [Boros and

Moll 1999a] for a proof of the more general statement: If P .x/ is a polynomial
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with nondecreasing, nonnegative coefficients, then the coefficient sequence of

P .xC 1/ is unimodal.

� They form a log-concave sequence: define the operator

L.fakg/ W D fa2
k � ak�1akC1g

acting on sequences of positive real numbers. A sequence fakg is called log-

concave if its image under L is again a sequence of positive numbers; i.e. a2
k
�

ak�1akC1 � 0. Note that this condition is satisfied if and only if the sequence

fbk W D log.ak/g is concave, hence the name. We refer the reader to [Wilf

1990] for a detailed introduction. The log-concavity of dl .m/ was established

in [Kauers and Paule 2007] using computer algebra techniques: in particular,

cylindrical algebraic decompositions as developed in [Caviness and Johnson

1998] and [Collins 1975].

� They produce interesting polynomials: in [Boros et al. 2001] one finds the

representation

dl.m/D
Al;m

l ! m! 2mCl
; (2-9)

with

Al;m D ˛l.m/

m
Y

kD1

.4k � 1/�ˇl .m/

m
Y

kD1

.4kC 1/: (2-10)

Here ˛l and ˇl are polynomials in m of degrees l and l � 1, respectively. For

example, ˛1.m/D 2mC 1 and ˇ1.m/D 1, so that the coefficient of the linear

term of Pm.a/ is

d1.m/D
1

m! 2mC1

�

.2mC 1/

m
Y

kD1

.4k � 1/�
m
Y

kD1

.4kC 1/

�

: (2-11)

J. Little [2005] established the remarkable fact that the polynomials ˛l.m/ and

ˇl.m/ have all their roots on the vertical line Re mD � 1
2

.

When we showed this to Henry, he simply remarked: the only thing you have

to do now is to let l !1 and get the Riemann hypothesis. The proof in [Little

2005] consists in a study of the recurrence

ylC1.s/D 2syl.s/�
�

s2� .2l � 1/2
�

yl�1.s/; (2-12)

satisfied by ˛l..s�1/=2/ and ˇl ..s�1/=2/. There is no Number Theory in the

proof, so it is not likely to connect to the Riemann zeta function �.s/, but one

never knows.

The arithmetical properties of Al;m are beginning to be elucidated. We have

shown that their 2-adic valuation satisfies

�2.Al;m/D �2..mC 1� l/2l/C l; (2-13)
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where .a/k D a.aC 1/.aC 2/ � � � .aC k � 1/ is the Pochhammer symbol. This

expression allows for a combinatorial interpretation of the block structure of

these valuations. See [Amdeberhan et al. 2007] for details.

3. The incipient rational Landen transformation

The clean analytic expression in (2-1) is not expected to extend to rational

functions of higher order. In our analysis we distinguish according to the domain

of integration: the finite interval case, mapped by a bilinear transformation to

Œ0;1/, and the whole line. In this section we consider the definite integral,

U6.a; bI c; d; e/D
Z 1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx; (3-1)

as the simplest case on Œ0;1/. The case of the real line is considered below. The

integrand is chosen to be even by necessity: none of the techniques in this section

work for the odd case. We normalize two of the coefficients in the denominator

in order to reduce the number of parameters. The standard approach for the

evaluation of (3-1) is to introduce the change of variables xD tan � . This leads

to an intractable trigonometric integral.

A different result is obtained if one first symmetrizes the denominator: we

say that a polynomial of degree d is reciprocal if Qd .1=x/D x�dQd .x/, that

is, the sequence of its coefficients is a palindrome. Observe that if Qd is any

polynomial of degree d , then

T2d .x/D xdQd .x/Qd .1=x/ (3-2)

is a reciprocal polynomial of degree 2d . For example, if

Q6.x/D x6C ax4C bx2C 1: (3-3)

then

T12.x/D x12C .aC b/x10C .aC bC ab/x8

C.2C a2C b2/x6C .aC bC ab/x4C .aC b/x2C 1:

The numerator and denominator in the integrand of (3-1) are now scaled by

x6Q6.1=x/ to produce a new integrand with reciprocal denominator:

U6 D
Z 1

0

S10.x/

T12.x/
dx; (3-4)

where we write

S10.x/D
5
X

jD0

sj x2j and T12.x/D
6
X

jD0

tj x2j : (3-5)
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The change of variables x D tan � now yields

U6 D
Z �=2

0

S10.tan �/ cos10.�/

T12.tan �/ cos12.�/
d�: (3-6)

Now let wD cos 2� and use sin2 � D 1
2
.1�w/ and cos2 � D 1

2
.1Cw/ to check

that the numerator and denominator of the new integrand,

S10.tan �/ cos10 � D
5
X

jD0

sj sin2j � cos10�2j � (3-7)

and

T12.tan �/ cos12 � D
6
X

jD0

tj sin2j � cos12�2j � D 2�6
6
X

jD0

tj .1�w/j .1Cw/6�j ;

are both polynomials in w. The mirror symmetry of T12, reflected in tj D t6�j ,

shows that the new denominator is an even polynomial in w. The symmetry of

cosine about �=2 shows that the terms with odd power of w have a vanishing

integral. Thus, with  D 2� , and using the symmetry of the integrand to reduce

the integral from Œ0; �� to Œ0; �=2�, we obtain

U6 D
Z �=2

0

r4 cos4 C r2 cos2 C r0

q6 cos6 C q4 cos4 C q2 cos2  C q0

d : (3-8)

The parameters rj ; qj have explicit formulas in terms of the original parameters

of U6. This even rational function of cos can now be expressed in terms of

cos 2 to produce (letting �  2 )

U6 D
Z �

0

˛2 cos2 � C˛1 cos � C˛0

ˇ3 cos3 � Cˇ2 cos2 � Cˇ1 cos � Cˇ0

d�: (3-9)

The final change of variables y D tan �
2

yields a new rational form of the inte-

grand:

U6 D
Z 1

0

c1y4C d1y2C e1

y6C a1y4C b1y2C 1
dy: (3-10)

Keeping track of the parameters, we have established:

THEOREM 3.1. The integral

U6 D
Z 1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx (3-11)

is invariant under the change of parameters

a1 
abC 5aC 5bC 9

.aC bC 2/4=3
; b1 

aC bC 6

.aC bC 2/2=3
;
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for the denominator parameters and

c1 
cCdCe

.aCbC2/2=3
; d1 

.bC3/cC2dC.aC3/e

aCbC2
; e1 

cCe

.aCbC2/1=3

for those of the numerator.

Theorem 3.1 is the precise analogue of the elliptic Landen transformation (1-1)

for the case of a rational integrand. We call (3-12) a rational Landen transfor-

mation. This construction was first presented in [Boros and Moll 2000].

3.1. Even rational Landen transformations. More generally, there is a similar

transformation of coefficients for any even rational integrand; details appear in

[Boros and Moll 2001b]. We call these even rational Landen Transformations.

The obstruction in the general case comes from (3-7); one does not get a poly-

nomial in w D cos 2� .

The method of proof for even rational integrals can be summarized as follows.

1) Start with an even rational integral:

U2p D
Z 1

0

even polynomial in x

even polynomial in x
dx: (3-12)

2) Symmetrize the denominator to produce

U2p D
Z 1

0

even polynomial in x

even reciprocal polynomial in x
dx: (3-13)

The degree of the denominator is doubled.

3) Let x D tan � . Then

U2p D
Z �=2

0

polynomial in cos 2�

even polynomial in cos 2�
d�: (3-14)

4) Symmetry produced the vanishing of the integrands with an odd power of

cos � in the numerator. We obtain

U2p D
Z �=2

0

even polynomial in cos 2�

even polynomial in cos 2�
d�: (3-15)

5) Let  D 2� to produce

U2p D
Z �

0

even polynomial in cos 

even polynomial in cos 
d : (3-16)

Using symmetry this becomes an integral over Œ0; �=2�.
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6) Let y D tan and use cos D 1=
p

1Cy2 to obtain

U2p D
Z 1

0

even polynomial in y

even polynomial in y
dy: (3-17)

The degree of the denominator is half of what it was in Step 5.

Keeping track of the degrees one checks that the degree of the new rational

function is the same as the original one, with new coefficients that appear as

functions of the old ones.

4. A geometric interpretation

We now present a geometric foundation of the general even rational Landen

transformation (3-12) using the theory of Riemann surfaces. The text [Springer

2002] provides an introduction to this theory, including definitions of objects we

will refer to here. The sequence of transformations in Section 3 can be achieved

in one step by relating tan 2� to tan � . For historical reasons (this is what we

did first) we present the details with cotangent instead of tangent.

Consider the even rational integral

I D
Z 1

0

R.x/ dx D 1

2

Z 1

�1

R.x/ dx: (4-1)

Introduce the new variable

y DR2.x/D
x2� 1

2x
; (4-2)

motivated by the identity cot 2� D R2.cot �/. The function R2 W R! R is a

two-to-one map. The sections of the inverse are

x D �˙.y/D y˙
q

y2C 1: (4-3)

Splitting the original integral as

I D
Z 0

�1

R.x/ dxC
Z 1

0

R.x/ dx (4-4)

and introducing x D �C.y/ in the first and x D ��.y/ in the second integral,

yields

I D
Z 1

�1

.RC.y/CR�.y// dy (4-5)

where
RC.y/DR.�C.y//CR.��.y//;

R�.y/D
y

p

y2C 1

�

R.�C.y//�R.��.y//
�

:
(4-6)
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A direct calculation shows that RC and R� are rational functions of degree at

most that of R.

The change of variables y D R2.x/ converts the meromorphic differential

' DR.x/ dx into

R.�C.y//
d�C

dy
CR.��.y//

d��

dy

D
�

.R.�C/CR.��//C
y.R.�C/�R.��//

p

y2C 1

�

dy

D .RC.y/CR�.y// dy:

The general situation is this: start with a finite ramified cover � W X ! Y

of Riemann surfaces and a meromorphic differential ' on X . Let U � Y

be a simply connected domain that contains no critical values of � , and let

�1; : : : ; �k W U ! X be the distinct sections of � . Define

��'
ˇ

ˇ

U
D

k
X

jD1

��
j ': (4-7)

In [Hubbard and Moll 2003] we show that this construction preserves analytic

1-forms, that is, if ' is an analytic 1-form in X then ��' is an analytic 1-form

in Y . Furthermore, for any rectifiable curve  on Y , we have
Z



��' D
Z

��1

': (4-8)

In the case of projective space, this leads to:

LEMMA 4.1. If � W P1 ! P
1 is analytic, and ' D R.z/ dz with R a rational

function, then ��' can be written as R1.z/ dz with R1 a rational function of

degree at most the degree of R.

This is the generalization of the fact that the integrals in (4-1) and (4-5) are the

same.

5. A further generalization

The procedure described in Section 3 can be extended with the rational map

Rm, defined by the identity

cot m� DRm.cot �/: (5-1)

Here m 2 N is arbitrary greater or equal than 2. We present some elementary

properties of the rational function Rm.

PROPOSITION 5.1. The rational function Rm satisfies:
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1) For m 2N define

Pm.x/W D
bm=2c
X

jD0

.�1/j
�

m

2j

�

xm�2j ;

Qm.x/W D
b.m�1/=2c
X

jD0

.�1/j
�

m

2j C 1

�

xm�.2jC1/:

Then Rm W D Pm=Qm.

2) The function Rm is conjugate to fm.x/ W D xm via M.x/ W D xC i

x� i
; that

is, Rm DM �1 ıfm ıM .

3) The polynomials Pm and Qm have simple real zeros given by

pk W D cot
.2kC 1/�

2m
for 0� k �m� 1;

qk W D cot
k�

m
for 1� k �m� 1:

If we change the domain to the entire real line, we can, using the rational substi-

tutions Rm.x/‘ x, produce a rational Landen transformation for an arbitrary

integrable rational function R.x/DB.x/=A.x/ for each integer value of m. The

result is a new list of coefficients, from which one produces a second rational

function R.1/.x/D J.x/=H.x/ with

Z 1

�1

B.x/

A.x/
dx D

Z 1

�1

J.x/

H.x/
dx: (5-2)

Iteration of this procedure yields a sequence xn, that has a limit x1 with con-

vergence of order m, that is,

kxnC1�x1k � Ckxn�x1km: (5-3)

We describe this procedure here in the form of an algorithm; proofs appear in

[Manna and Moll 2007a].

Lemma 4.1 applied to the map �.x/DRm.x/, viewed as ramified cover of

P
1, guarantees the existence of a such new rational function R.1/. The question

of effective computation of the coefficients of J and H is discussed below. In

particular, we show that all these calculations can be done symbolically.

� Algorithm for deriving rational Landen transformations

Step 1. The initial data is a rational function R.x/ W DB.x/=A.x/. We assume

that A and B are polynomials with real coefficients and A has no real zeros and
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write

A.x/ W D
p
X

kD0

akxp�k and B.x/ W D
p�2
X

kD0

bkxp�2�k : (5-4)

Step 2. Choose a positive integer m� 2.

Step 3. Introduce the polynomial

H.x/ W D Resz.A.z/;Pm.z/�xQm.z// (5-5)

and write it as

H.x/ W D
p
X

lD0

elx
p�l : (5-6)

The polynomial H is thus defined as the determinant of the Sylvester matrix

which is formed of the polynomial coefficients. As such, the coefficients el of

H.x/ themselves are integer polynomials in the ai . Explicitly,

el D .�1/lam
0

p
Y

jD1

Qm.xj /� � .p/

l
.Rm.x1/; Rm.x2/; : : : ;Rm.xp//; (5-7)

where fx1;x2; : : : ;xpg are the roots of A, each written according to multiplic-

ity. The functions �
.p/

l
are the elementary symmetric functions in p variables

defined by
p
Y

lD1

.y �yl /D
p
X

lD0

.�1/l�
.p/

l
.y1; : : : ;yp/y

p�l : (5-8)

It is possible to compute the coefficients el symbolically from the coefficients

of A, without the knowledge of the roots of A.

Also define

E.x/ W DH.Rm.x//�Qm.x/
p: (5-9)

Step 4. The polynomial A divides E and we denote the quotient by Z. The

coefficients of Z are integer polynomials in the ai .

Step 5. Define the polynomial C.x/ W D B.x/Z.x/.

Step 6. There exists a polynomial J.x/, whose coefficients have an explicit

formula in terms of the coefficients cj of C.x/, such that
Z 1

�1

B.x/

A.x/
dx D

Z 1

�1

J.x/

H.x/
dx: (5-10)

This new integrand is the rational function whose existence is guaranteed by

Lemma 4.1. The explicit computation of the coefficients of J can be found in

[Manna and Moll 2007a]. This is the rational Landen transformation of order m.
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EXAMPLE 5.1. Completing the algorithm with mD 3 and the rational function

R.x/D 1

ax2C bxC c
; (5-11)

produces the result stated below. Notice that the values of the iterates are ratios

of integer polynomials of degree 3, as was stated above. The details of this

example appear in [Manna and Moll 2007b].

THEOREM 5.2. The integral

I D
Z 1

�1

dx

ax2C bxC c
(5-12)

is invariant under the transformation

a‘ a

�

�

.aC3c/2�3b2
�

; b‘ b

�

�

3.a�c/2�b2
�

; c‘ c

�

�

.3aCc/2�3b2
�

;

(5-13)

where � W D .3aC c/.aC 3c/� b2. The condition b2 � 4ac < 0, imposed to

ensure convergence of the integral, is preserved by the iteration.

EXAMPLE 5.2. In this example we follow the steps described above in order to

produce a rational Landen transformation of order 2 for the integral

I D
Z 1

�1

b0x4C b1x3C b2x2C b3xC b4

a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6

dx: (5-14)

Recall that the algorithm starts with a rational function R.x/ and produces a

new function L2.R.x// satisfying

Z 1

�1

R.x/ dx D
Z 1

�1

L2.R.x// dx: (5-15)

Step 1. The initial data is R.x/D B.x/=A.x/ with

A.x/D a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6; (5-16)

and

B.x/D b0x4C b1x3C b2x2C b3xC b4: (5-17)

The parameter p is the degree of A, so p D 6.

Step 2. We choose m D 2 to produce a method of order 2. The algorithm

employs the polynomials P2.z/D z2� 1 and Q2.z/D 2z.
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Step 3. The polynomial

H.x/ W D Resz.A.z/; z
2� 1� 2xz/ (5-18)

is computed with the Mathematica command Resultant to obtain

H.x/D e0x6C e1x5C e2x4C e3x3C e4x2C e5xC e6; (5-19)

where

e0 D 64a0a6;

e1 D�32.a0a5� a1a6/; (5-20)

e2 D 16.a0a4� a1a5C 6a0a6C a2a6/;

e3 D�8.a0a3� a1a4C 5a0a5C a2a5� 5a1a6� a3a6/;

e4 D 4.a0a2�a1a3C4a0a4Ca2a4�4a1a5�a3a5C9a0a6C4a2a6Ca4a6/;

e5 D�2.a0a1� a1a2C 3a0a3C a2a3� 3a1a4� a3a4C 5a0a5

C 3a2a5C a4a5� 5a1a6� 3a3a6� a5a6/;

e6 D .a0� a1C a2� a3C a4� a5C a6/.a0C a1C a2C a3C a4C a5C a6/:

The polynomial H.x/ is the denominator of the integrand L2.R.x// in (5-15).

In Step 3 we also define

E.x/DH.R2.x//Q
6
2.x/DH

�

x2� 1

2x

�

� .2x/6: (5-21)

The function E.x/ is a polynomial of degree 12, written as

E.x/D
12
X

kD0

˛kx12�k : (5-22)

Using the expressions for ej in (5-20) in (5-21) yields

˛0 D ˛12 D 64a0a6;

˛1 D�˛11 D � 64.a0a5� a1a6/;

˛2 D ˛10 D 64.a0a4� a1a5C a2a6/;

˛3 D �˛9 D � 64.a0a3� a1a4C a2a5� a3a6/;

˛4 D ˛8 D 64.a0a2� a1a3C a2a4� a3a5C a4a6/;

˛5 D �˛7 D � 64.a0a1� a1a2C a2a3� a3a4C a4a5� a5a6/;

˛6 D 64.a2
0� a2

1C a2
2� a2

3C a2
4� a2

5C a2
6/:

(5-23)
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Step 4. The polynomial A.x/ always divides E.x/. The quotient is denoted by

Z.x/. The values of j̨ given in (5-23) produce

Z.x/D 64.a0� a1xC a2x2� a3x3C a4x4� a5x5C a6x6/: (5-24)

Step 5. Define the polynomial C.x/ W DB.x/Z.x/. In this case, C is of degree

10, written as

C.x/D
10
X

kD0

ckx10�k ; (5-25)

and the coefficients ck are given by

c0 D 64a6b0;

c1 D�64.a5b0� a6b1/;

c2 D 64.a4b0� a5b1C a6b2/;

c3 D�64.a3b0� a4b1C a5b2� a6b3/;

c4 D 64.a2b0� a3b1C a4b2� a5b3C a6b4/;

c5 D�64.a1b0� a2b1C a3b2� a4b3C a5b4/; (5-26)

c6 D 64.a0b0� a1b1C a2b2� a3b3C a4b4/;

c7 D 64.a0b1� a1b2C a2b3� a3b4/;

c8 D 64.a0b2� a1b3C a2b4/;

c9 D 64.a0b3� a1b4/;

c10 D 64a0b4:

Step 6 produces the numerator J.x/ of the new integrand L2.R.x// from the

coefficients cj given in (5-26). The function J.x/ is a polynomial of degree 4,

written as

J.x/D
4
X

kD0

jkx4�k : (5-27)

Using the values of (5-26) we obtain

j0 D 32.a6b0C a0b4/; (5-28)

j1 D�16.a5b0� a6b1C a0b3� a1b4/;

j2 D 8.a4b0C 3a6b0� a5b1C a0b2C a6b2� a1b3C 3a0b4C a2b4/;

j3 D�4.a3b0C 2a5b0C a0b1� a4b1� 2a6b1� a1b2C a5b2

C2a0b3C a3b3� a6b3� 2a1b4� a3b4/;

j4 D 2.a0b0C a2b0C a4b0C a6b0� a1b1� a3b1� a5b1

Ca0b2C a2b2C a4b2C a6b2� a1b3

�a3b3� a5b3C a0b4C a2b4C a4b4C a6b4/:
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The explicit formula used to compute the coefficients of J can be found in

[Manna and Moll 2007a].

The new rational function is

L2.R.x// W D
J.x/

H.x/
; (5-29)

with J.x/ given in (5-27) and H.x/ in (5-19). The transformation is

b0x4C b1x3C b2x2C b3xC b4

a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6

‘ j0x4C j1x3C j2x2C j3xC j4

e0x6C e1x5C e2x4C e3x3C e4x2C e5xC e6

:

The numerator coefficients are given in (5-20) and the denominator ones in

(5-28), explicitly as polynomials in the coefficients of the original rational func-

tion. The generation of these polynomials is a completely symbolic procedure.

The first two steps of this algorithm, applied to the definite integral
Z 1

�1

dx

x6Cx3C 1
D �

9

�

2
p

3 cos.�=9/C
p

3 cos.2�=9/C 3 sin.2�=9/
�

;

(5-30)

produces the identities

Z 1

�1

dx

x6Cx3C1
D
Z 1

�1

2.16x4C12x2C2xC2/

64x6C96x4C36x2C3
dx

D
Z 1

�1

4.2816x4�1024x3C8400x2�884xC5970/

12288x6C59904x4C87216x2C39601
dx:

6. The issue of convergence

The convergence of the double sequence .an; bn/ appearing in the elliptic

Landen transformation (1-1) is easily established. Assume 0 < b0 � a0, then

the arithmetic-geometric inequality yields bn � bnC1 � anC1 � an. Also

0� anC1� bnC1 D
1

2

.an� bn/
2

.
p

anC
p

bn/2
: (6-1)

This shows an and bn have a common limit: M D AGM.a; b/, the arithmetic-

geometric of a and b. The convergence is quadratic:

janC1�M j � C jan�M j2; (6-2)

for some constant C > 0 independent of n. Details can be found in [Borwein

and Borwein 1987].
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The Landen transformations produce maps on the space of coefficients of the

integrand. In this section, we discuss the convergence of the rational Landen

transformations. This discussion is divided in two cases:

Case 1: the half-line. Let R.x/ be an even rational function, written as R.x/D
P .x/=Q.x/, with

P .x/D
p�1
X

kD0

bkx2.p�1�k/; Q.x/D
p
X

kD0

akx2.p�k/; (6-3)

and a0 D ap D 1. The parameter space is

PC
2p
D f.a1; : : : ; ap�1I b0; : : : ; bp�1/g � R

p�1 �R
p: (6-4)

We write

a W D .a1; : : : ; ap�1/; b W D .b0; : : : ; bp/: (6-5)

Define

�2p D
�

.a1; : : : ; ap�1/ 2 R
p�1 W

Z 1

0

R.x/ dx is finite

�

: (6-6)

Observe that the convergence of the integral depends only on the parameters in

the denominator.

The Landen transformations provide a map

˚2p WPC
2p
!PC

2p
(6-7)

that preserves the integral. Introduce the notation

an D .a.n/
1
; : : : ; a

.n/
p�1

/ and bn D .b.n/
0
; : : : ; b.n/

p /; (6-8)

where

.an;bn/D ˚2p.an�1;bn�1/ (6-9)

are the iterates of the map ˚2p .

The result that one expects is this:

THEOREM 6.1. The region �2p is invariant under the map ˚2p . Moreover

an!
 

�

p

1

�

;

�

p

2

�

; : : : ;

�

p

p� 1

�

!

; (6-10)

and there exists a number L, that depends on the initial conditions, such that

bn!
 

�

p� 1

0

�

L;

�

p� 1

1

�

L; : : : ;

�

p� 1

p� 1

�

L

!

: (6-11)

This is equivalent to saying that the sequence of rational functions formed by

the Landen transformations, converge to L=.x2C 1/.
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This was established in [Hubbard and Moll 2003] using the geometric language

of Landen transformations which, while unexpected, is satisfactory.

THEOREM 6.2. Let ' be a 1-form, holomorphic in a neighborhood of R � P
1.

Then

lim
n!1

.��/
n' D 1

�

�
Z 1

�1

'

�

dz

1C z2
; (6-12)

where the convergence is uniform on compact subsets of U , the neighborhood

in the definition of ��.

The proof is detailed for the map �.z/D z2�1

2z
DR2.z/, but it extends without

difficulty to the generalization Rm.

Theorem 6.2 can be equivalently reformulated as:

THEOREM 6.3. The iterates of the Landen transformation starting at .a0;b0/2
PC

2p
converge (to the limit stated in Theorem 6.1 ) if and only if the integral

formed by the initial data is finite.

It would be desirable to establish this result by purely dynamical techniques.

This has been established only for the case p D 3. In that case the Landen

transformation for

U6 W D
Z 1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx (6-13)

is

a1 
abC 5aC 5bC 9

.aC bC 2/4=3
; b1 

aC bC 6

.aC bC 2/2=3
; (6-14)

coupled with

c1 
cC d C e

.aCbC2/2=3
; d1 

.bC3/cC 2d C .aC3/e

aC bC 2
; e1 

cC e

.aCbC2/1=3
:

The region

�6 D f.a; b/ 2 R
2 W U6 <1g (6-15)

is described by the discriminant curve R, the zero set of the polynomial

R.a; b/D 4a3C 4b3� 18ab� a2b2C 27: (6-16)

This zero set, shown in Figure 1, has two connected components: the first one

RC contains .3; 3/ as a cusp and the second one R�, given by R�.a; b/D 0, is

disjoint from the first quadrant. The branch R� is the boundary of the set �6.

The identity

R.a1; b1/D
.a� b/2 R.a; b/

.aC bC 2/4
; (6-17)
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10

10

-10

-10

Figure 1. The zero locus of R.a; b/.

shows that @R is invariant under ˚6. By examining the effect of this map along

lines of slope �1, we obtain a direct parametrization of the flow on the discrim-

inant curve. Indeed, this curve is parametrized by

a.s/D s3C 4

s2
and b.s/D s3C 16

4s
: (6-18)

Then

'.s/D
�

4.s2C 4/2

s.sC 2/2

�1=3

(6-19)

gives the image of the Landen transformation ˚6; that is,

˚6.a.s/; b.s//D .a.'.s//; b.'.s//: (6-20)

The map ˚6 has three fixed points: .3; 3/; that is superattracting, a saddle

point P2 on the lower branch R� of the discriminant curve, and a third unstable

spiral below this lower branch. In [Chamberland and Moll 2006] we prove:

THEOREM 6.4. The lower branch of the discriminant curve is the curve �6.

This curve is also the global unstable manifold of the saddle point P2. There-

fore the iterations of ˚6 starting at .a; b/ converge if and only if the integral
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U6, formed with the parameters .a; b/, is finite. Moreover, .an; bn/ ! .3; 3/

quadratically and there exists a number L such that .cn; dn; en/! .1; 2; 1/L.

The next result provides an analogue of the AGM (1-13) for the rational case.

The main differences here are that our iterates converge to an algebraic number

and we achieve order-m convergence.

Case 2: The whole line. This works for any choice of positive integer m. Let

R.x/ be a rational function, written as R.x/DB.x/=A.x/. Assume that the co-

efficients of A and B are real, that A has no real zeros and that deg B�deg A�2.

These conditions are imposed to guarantee the existence of

I D
Z 1

�1

R.x/ dx: (6-21)

In particular A must be of even degree, and we write

A.x/D
p
X

kD0

akxp�k and B.x/D
p�2
X

kD0

bkxp�2�k : (6-22)

We can also require that deg.gcd.A;B//D 0.

The class of such rational functions will be denoted by Rp .

The algorithm presented in Section 5 provides a transformation on the pa-

rameters

PpW D fa0; a1; : : : ; apI b0; b1; : : : ; bp�2 g D R
pC1 �R

p�1 (6-23)

of R 2Rp that preserves the integral I . In fact, we produce a family of maps,

indexed by m 2 N,

Lm;p WRp!Rp;

such that
Z 1

�1

R.x/ dx D
Z 1

�1

Lm;p.R.x// dx: (6-24)

The maps Lm;p induce a rational Landen transformation

˚m;p WPp!Pp (6-25)

on the parameter space: we simply list the coefficients of Lm;p.R.x//.

The original integral is written in the form

ID b0

a0

Z 1

�1

xp�2C b�1
0

b1xp�3C b�1
0

b2xp�4C � � �C b�1
0

bp�2

xpC a�1
0

a1xp�1C a�1
0

a2xp�2C � � �C a�1
0

ap

dx: (6-26)

The Landen transformation generates a sequence of coefficients,

Pp;nW D fa.n/
0
; a

.n/
1
; : : : ; a.n/

p I b
.n/
0
; b

.n/
1
; : : : ; b

.n/
p�2
g ; (6-27)
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with Pp;0 DPp as in (6-23). We expect that, as n!1,

xn W D

0

@

a
.n/
1

a
.n/
0

;
a

.n/
2

a
.n/
0

; : : : ;
a

.n/
p

a
.n/
0

;
b

.n/
1

b
.n/
0

;
b

.n/
2

b
.n/
0

; : : : ;
b

.n/
p�2

b
.n/
0

1

A (6-28)

converges to

x1 W D
�

0;

�

q

1

�

; 0;

�

q

2

�

; : : : ;

�

q

q

�

I 0;
�

q� 1

1

�

; 0;

�

q� 1

2

�

; : : : ;

�

q� 1

q� 1

��

;

(6-29)

where q D p=2. Moreover, we should have

kxnC1�x1k � Ckxn�x1km: (6-30)

The invariance of the integral then shows that

b
.n/
0

a
.n/
0

! 1

�
I: (6-31)

This produces an iterative method to evaluate the integral of a rational func-

tion. The method’s convergence is of order m.

The convergence of these iterations, and in particular the bound (6-30), can

be established by the argument presented in Section 4. Thus, the transformation

Lm;p leads to a sequence that has order-m convergence. We expect to develop

these ideas into an efficient numerical method for integration.

We choose to measure the convergence of a sequence of vectors to 0 in the

L2-norm,

kvk2 D
1

p

2p� 2

� 2p�2
X

kD1

kvkk2
�1=2

; (6-32)

and also the L1-norm,

kvk1 DMax fkvkk W 1� k � 2p� 2 g : (6-33)

The rational functions appearing as integrands have rational coefficients, so, as

a measure of their complexity, we take the largest number of digits of these

coefficients. This appears in the column marked size.

The tables on the next page illustrate the iterates of rational Landen transfor-

mations of order 2; 3 and 4, applied to the example

I D
Z 1

�1

3xC 5

x4C 14x3C 74x2C 184xC 208
dx D � 7�

12
:

The first column gives the L2-norm of un � u1, the second its L1-norm, the

third presents the relative error in (6-31), and in the last column we give the size
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n L2-norm L1-norm Error Size

1 58:7171 69:1000 1:02060 5

2 7:444927 9:64324 1:04473 10

3 4:04691 5:36256 0:945481 18

4 1:81592 2:41858 1:15092 41

5 0:360422 0:411437 0:262511 82

6 0:0298892 0:0249128 0:0189903 164

7 0:000256824 0:000299728 0:0000362352 327

8 1:92454� 10�8 2:24568� 10�8 1:47053� 10�8 659

9 1:0823� 10�16 1:2609� 10�16 8:2207� 10�17 1318

Table 1. Method of order 2.

n L2-norm L1-norm Error Size

1 15:2207 20:2945 1:03511 8

2 1:97988 1:83067 0:859941 23

3 0:41100 0:338358 0:197044 69

4 0:00842346 0:00815475 0:00597363 208

5 5:05016� 10�8 5:75969� 10�8 1:64059� 10�9 626

6 1:09651� 10�23 1:02510� 10�23 3:86286� 10�24 1878

7 1:12238� 10�70 1:22843� 10�70 8:59237� 10�71 5634

Table 2. Method of order 3.

n L2-norm L1-norm Error Size

1 7:44927 9:64324 1:04473 10

2 1:81592 2:41858 1:15092 41

3 0:0298892 0:0249128 0:0189903 164

4 1:92454� 10�8 2:249128� 10�8 1:47053� 10�8 659

5 3:40769� 10�33 3:96407� 10�33 2:56817� 10�33 2637

Table 3. Method of order 4.

of the rational integrand. At each step, we verify that the new rational function

integrates to �7�=12.

As expected, for the method of order 2, we observe quadratic convergence

in the L2-norm and also in the L1-norm. The size of the coefficients of the

integrand is approximately doubled at each iteration.
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EXAMPLE 6.1. A method of order 3 for the evaluation of the quadratic integral

I D
Z 1

�1

dx

ax2C bxC c
; (6-34)

has been analyzed in [Manna and Moll 2007b]. We refer to Example 5.1 for the

explicit formulas of this Landen transformation, and define the iterates accord-

ingly. From there, we prove that the error term,

en W D
�

an� 1
2

p

4ac� b2; bn; cn� 1
2

p

4ac � b2
�

(6-35)

satisfies en! 0 as n!1, with cubic rate:

kenC1k � Ckenk3: (6-36)

The proof of convergence is elementary. Therefore

.an; bn; cn/!
�

p

ac � b2=4; 0;
p

4ac � b2=4
�

; (6-37)

which, in conjunction with (6-34), implies that

I D 2p
4ac� b2

Z 1

�1

dx

x2C 1
; (6-38)

exactly as one would have concluded by completing the square. Unlike com-

pleting the square, our method extends to a general rational integral over the

real line.

7. The appearance of the AGM in diverse contexts

The (elliptic) Landen transformation

a1 1
2
.aC b/; b1 

p
ab (7-1)

leaving invariant the elliptic integral

G.a; b/D
Z �=2

0

d'
q

a2 cos2 'C b2 sin2 '

(7-2)

appears in many different forms. In this last section we present a partial list of

them.



LANDEN SURVEY 311

7.1. The elliptic Landen transformation. For the lattice LDZ˚!Z, introduce

the theta-functions

#3.x; !/ W D
1
X

nD�1

z2nqn2

; #4.x; !/ W D
1
X

nD�1

.�1/nz2nqn2

; (7-3)

where zD e� ix and qD e� i! . The condition Im!>0 is imposed to ensure con-

vergence of the series. These functions admit a variety of remarkable identities.

In particular, the null-values (those with x D 0) satisfy

#2
4 .0; 2!/D #3.0; !/#4.0; !/; #2

3 .0; 2!/D
1
2

�

#2
3 .0; !/C#

2
4 .0; !/

�

;

and completely characterize values of the AGM, leading to the earlier result

[Borwein and Borwein 1987]. Grayson [1989] has used the doubling of the

period ! to derive the arithmetic-geometric mean from the cubic equations de-

scribing the corresponding elliptic curves. See Chapter 3 in [McKean and Moll

1997] for more information. P. Sole et al. [1995; 1998] have proved generaliza-

tions of these identities using lattice enumeration methods related to binary and

ternary codes.

7.2. A time-one map. We now present a deeper and more modern version of a

result known to Gauss: given a sequence of points fxng on a manifold X , decide

whether there is a differential equation

dx

dt
D V .x/; (7-4)

starting at x0 such that xn D x.n;x0/. Here x.t;x0/ is the unique solution to

(7-4) satisfying x.0;x0/D x0. Denote by

�ellip.a; b/D
�

1
2
.aC b/;

p
ab
�

(7-5)

the familiar elliptic Landen transformation. Now take a; b 2 R with a> b > 0.

Use the null-values of the theta functions to find unique values .�; �/ such that

aD �#2
3 .0; �/; b D �#2

4 .0; �/: (7-6)

Finally define

xellip.t/D .a.t/; b.t//D �
�

#2
3 .0; 2

t�/; #2
4 .0; 2

t�/
�

; (7-7)

with xellip.0/D .a; b/. The remarkable result is [Deift 1992]:

THEOREM 7.1 (DEIFT, LI, PREVIATO, TOMEI). The map t ! xellip.t/ is an

integrable Hamiltonian flow on X equipped with an appropriate symplectic

structure. The Hamiltonian is the complete elliptic integral G.a; b/ and the
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angle is (essentially the logarithm of ) the second period of the elliptic curve

associated with � . Moreover

xellip.k/D �k
ellip.a; b/: (7-8)

Thus the arithmetic-geometric algorithm is the time-one map of a completely

integrable Hamiltonian flow.

Notice that this theorem shows that the result in question respects some addi-

tional structures whose invention postdates Gauss.

A natural question is whether the map (3-12) appears as a time-one map of

an interesting flow.

7.3. A quadruple sequence. Several variations of the elliptic Landen appear in

the literature. Borchardt [1876] considers the four-term quadratically convergent

iteration

anC1 D
anC bnC cnC dn

4
; bnC1 D

p
anbnC

p
cndn

2
;

cnC1 D
p

ancnC
p

bndn

2
; dnC1 D

p
andnC

p
bncn

2
;

(7-9)

starting with a0 D a; b0 D b; c0 D c and d0 D d . The common limit, denoted

by G.a; b; c; d/, is given by

1

G.a; b; c; d/
D 1

�2

Z ˛3

0

Z ˛2

˛1

.x�y/ dx dy
p

R.x/R.y/
; (7-10)

where R.x/D x.x�˛0/.x�˛1/.x�˛2/.x�˛3/ and the numbers j̨ are given

by explicit formulas in terms of the parameters a; b; c; d . Details are given in

[Mestre 1991].

The initial conditions .a; b; c; d/ 2 R
4 for which the iteration converges has

some interesting invariant subsets. When aD b and cDd , we recover the AGM

iteration (1-1). In the case that b D c D d , we have another invariant subset,

linking to an iterative mean described below.

7.4. Variations of AGM with hypergeometric limit. Let N 2N. The analysis

of

anC1 D
anC .N � 1/bn

N
and cnC1 D

an� bn

N
; (7-11)

with bn D .aN
n � cN

n /
1=N , is presented in [Borwein and Borwein 1991]. All

the common ingredients appear there: a common limit, fast convergence, theta

functions and sophisticated iterations for the evaluation of � . The common
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limit is denoted by AGN .a; b/. The convergence is of order N and the limit is

identified for small N : we have, for 0< k < 1,

1

AG2.1; k/
D2F1.1=2; 1=2I 1I 1�k2/;

1

AG3.1; k/
D2F1.1=3; 2=3I 1I 1�k2/;

where

2F1.a; bI cI x/D
1
X

kD0

.a/k .b/k

.c/k k!
xk (7-12)

is the classical hypergeometric function. There are integral representations of

these as well which parallel (1-13); see [Borwein et al. 2004a], Section 6.1 for

details.

Other hypergeometric values appear from similar iterations. For example,

anC1 D
anC 3bn

4
and bnC1 D

p

bn.anC bn/=2; (7-13)

have a common limit, denoted by A4.a; b/. It is given by

1

A4.1; k/
D 2F2

1 .1=4; 3=4I 1I 1� k2/: (7-14)

To compute � quartically, start at a0D1; b0D .12
p

2�16/1=4. Now compute

an from two steps of AG2:

anC1 D
anC bn

2
; and bnC1 D

�

anb3
nC bna3

n

2

�1=4

: (7-15)

Then

� D lim
n!1

3a4
nC1

�

1�
n
X

jD0

2jC1.a4
j � a4

jC1/

��1

(7-16)

with janC1 � �j � C jan � �j4, for some constant C > 0. This is much better

than the partial sums of

� D 4

1
X

kD0

.�1/k

2kC 1
: (7-17)

The sequences .an/, .bn/ defined by the iteration

anC1 D
anC 2bn

3
; bnC1 D

�

bn.a
2
nC anbnC b2

n/

3

�1=3

; (7-18)

starting at a0 D 1, b0 D x are analyzed in [Borwein and Borwein 1990]. They

have a common limit F.x/ given by

1

F.x/
D 2F1

�

1=3; 2=3I 1I 1�x3
�

: (7-19)
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7.5. Iterations where the limit is harder to find. J. Borwein and P. Borwein

[1989] studied the iteration of

.a; b/!
�

aC 3b

4
;

p
abC b

2

�

; (7-20)

and showed the existence of a common limit B.a0; b0/. Define B.x/DB.1;x/.

The study of the iteration (7-20) is based on the functional equation

B.x/D 1C 3x

4
B

�

2.
p

xCx/

1C 3x

�

: (7-21)

and a parametrization of the iterates by theta functions [Borwein and Borwein

1989]. The complete analysis of (7-20) starts with the purely computational

observation that

B.x/� �
2

3
log�2.x=4/ as x! 0: (7-22)

H. H. Chan, K. Chua and P. Sole [Heng Huat Chan and Sole 2002] identified

the limiting function as

B.x/D
�

2F1

�

1

3
;

1

6
I 1I 27

x.1�x/2

.1C3x/3

���2

; (7-23)

valid for x 2
�

2
3
; 1
�

. A similar hypergeometric expression gives B.x/ for x 2
�

0; 2
3

�

.

7.6. Fast computation of elementary functions. The fast convergence of

the elliptic Landen recurrence (1-1) to the arithmetic-geometric mean provides

a method for numerical evaluation of the elliptic integral G.a; b/. The same

idea provides for the fast computation of elementary functions. For example, in

[Borwein and Borwein 1984] we find the estimate

ˇ

ˇlog x�
�

G.1; 10�n/�G.1; 10�nx/
�
ˇ

ˇ< n10�2.n�1/; (7-24)

for 0< x < 1 and n� 3.

7.7. A continued fraction. The continued fraction

R�.a; b/D
a

�C b2

�C 4a2

�C 9b2

�C� � �

; (7-25)

has an interesting connection to the AGM. In their study of the convergence of

R�.a; b/, J. Borwein, R. Crandall and G. Fee [Borwein et al. 2004b] established
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the identity

R�

�

aC b

2
;
p

ab

�

D 1

2

�

R�.a; b/CR�.b; a/
�

: (7-26)

This identity originates with Ramanujan; the similarity with AGM is now direct.

The continued fraction converges for positive real parameters, but for a; b2C

the convergence question is quite delicate. For example, the even/odd parts of

R1.1; i/ converge to distinct limits. See [Borwein et al. 2004b; 2004c] for more

details.

7.8. Elliptic Landen with complex initial conditions. The iteration of (1-1)

with a0; b0 2 C requires a choice of square root at each step. Let a; b 2 C be

nonzero and assume a¤˙b. A square root c of ab is called the right choice if
ˇ

ˇ

ˇ

ˇ

aCb

2
� c

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

aCb

2
C c

ˇ

ˇ

ˇ

ˇ

: (7-27)

It turns out that in order to have a limit for (1-1) one has to make the right choice

for all but finitely many indices n� 1. This is described in detail in [Cox 1984].

7.9. Elliptic Landen with p-adic initial conditions. Let p be a prime and a; b

be nonzero p-adic numbers. To guarantee that the p-adic series

c D a

1
X

iD0

�1
2

i

��

b

a
� 1

�i

(7-28)

converges, and thus defines a p-adic square root of ab, one must assume

b=a� 1 mod p˛; (7-29)

where ˛ D 3 for p D 2 and 1 otherwise. The corresponding sequence defined

by (1-1) converges for p ¤ 2 to a common limit: the p-adic AGM. In the case

pD 2 one must assume that the initial conditions satisfy b=a� 1 mod 16. In the

case b=a� 1 mod 8 but not 1 modulo 16, the corresponding sequence .an; bn/

does not converge, but the sequence of so-called absolute invariants

jn D
28.a4

n� a2
nb2

nC b4
n/

3

a4
nb4

n.a
2
n� b2

n/
2

(7-30)

converges to a 2-adic integer. Information about these issues can be found in

[Henniart and Mestre 1989]. D. Kohel [2003] has proposed a generalization of

the AGM for elliptic curves over a field of characteristic p 2 f2; 3; 5; 7; 13g.
Mestre [2000] has developed an AGM theory for ordinary hyperelliptic curves

over a field of characteristic 2. This has been extended to nonhyperelliptic curves

of genus 3 curves by Lehavi and Ritzenhaler [2007]. An algorithm for counting
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points for ordinary elliptic curves over finite fields of characteristic p > 2 based

on the AGM is presented in [Carls 2004].

7.10. Higher genus AGM. An algorithm analogue to the AGM for abelian

integrals of genus 2 was discussed by Richelot [1836; 1837] and Humberdt

[1901]. Some details are discussed in [Bost and Mestre 1988]. The case of

abelian integrals of genus 3 can be found in [Lehavi and Ritzenhaler 2007].

Gauss was correct: his numerical calculation (1-4) has grown in many unex-

pected directions.
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