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INTEGRAL

VICTOR H. MOLL

Abstract. The integral of a rational function proposed as a question in Math-

ematics Stack Exchange is evaluated. The integrand has a polynomial of degree
4 as denominator. A natural extension to degree 8 is shown to vanish.

1. Introduction

Question 258746 in Mathematics Stack Exchange asks for the evaluation of

(1.1) I1(α, β) =

∫

∞

−∞

dw

(α2 − w2)2 + β2w2
.

It is convenient to expand the integrand and introduce the scaling to obtain

I1(α, β) = 2

∫

∞

0

dw

w4 + (β2 − 2α2)w2 + α4
(1.2)

=
2

α3

∫

∞

0

dt

t4 + 2at2 + 1
,

where a = β2/2α2 − 1. The value of I1(α, β) is now obtained from the next result.

Theorem 1.1. For a > −1 and m ∈ N ∪ {0}, define

(1.3) N0,4(a;m) :=

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1
.

Then

(1.4) N0,4(a;m) =
π

2

Pm(a)

[2(a+ 1)]
m+1/2

,

where Pm(a) is the polynomial

(1.5) Pm(a) =
m
∑

ℓ=0

[

2−2m
m
∑

k=ℓ

2k
(

2m− 2k

m− k

)(

m+ k

k

)(

k

ℓ

)

]

aℓ.

The special case m = 0 gives

(1.6) N0,4(a; 0) =

∫

∞

0

dx

x4 + 2ax2 + 1
=

π

2
√
2
√
a+ 1

and this produces

(1.7) I1(α, β) =
π

α2β
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directly.
An elementary proof of Theorem 1.1, using only the value of the Wallis’ integral

(1.8)

∫

∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(

2m

m

)

,

appears in [4]. The reader will find in [1] a variety of proofs, including the original
one in [2].

2. An email request

In a recent email, the author was asked for the evaluation of

(2.1) I2(p, q) =

∫

∞

−∞

x4 − p+ qx2

(x4 − p)2 + (qx2)2
dx, for p, q > 0.

This is a natural extension of the original question about the integral I1 in (1.1).
A brute force computation of I2(p, q) using Mathematica gives

(2.2) I2(1, 1) = 0 and I2(2, 3) = 0.

On the other hand, if one asks for the value of I2(p, q) with p and q kept as param-
eters, produces a result with a variety of restrictions such as

(2.3) Re

[

(

p− 1

2
q2 − 1

2

√

−4pq2 + q4
)1/4

]

> 0.

This is not a natural restriction, since (2.1) converges for any value p, q > 0.
Symbolic examples suggest that I2(p, q) = 0. But more seems to be true. Let

(2.4) f(x; p, q) =
x4 − p+ qx2

(x4 − p)2 + (qx2)2

then the examples above satisfy

(2.5)

∫ 1

0

f(x; p, q) dx = −
∫

∞

1

f(x; p, q) dx,

and this gives I2(p, q) = 0. An elementary approach to (2.5), following techniques
developed in the classical book [5], is presented next.

Lemma 2.1. Assume g(x) satisfies g(1/x) = −x2g(x). Then

∫

∞

0

g(x) dx = 0.

Proof. Split the integral into [0, 1] and [1, ∞) and make the change of variables
x 7→ 1/x in the second interval. �

It is unfortunate that f(x; p, q) does not satisfy the hypothesis of Lemma 2.1. A
different approach is required. This is presented next.

Expanding the denominator in (2.1) and using the symmetry of the integrand
gives

(2.6) I2(p, q) = 2

∫

∞

0

x4 + qx2 − p

x8 + (q2 − 2p)x4 + p2
dx.

In order to compute I2(p, q) introduce the notation

(2.7) Tk(a) =

∫

∞

0

tk dt

t8 + 2at4 + 1
.
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Lemma 2.2. The integral I2(p, q) is given by

(2.8) I2(p, q) = 2p−3/4T4(a) + 2qp−5/4T2(a)− 2p−3/4T0(a)

with a = q2/2p− 1.

Proof. Make the change of variables x = p1/4t so that

(2.9) x8 + (q2 − 2p)x4 + p2 = p2
(

t8 + 2at4 + 1
)

.

The rest is elementary. �

The integrals Tk(a) are evaluated in the next section.

3. The integrals Tk

This section presents the evaluation of the integrals Tk. The first result was
established in [3]. The conditions a1 > max {−a2 − 1,−sign(a2 +4)×

(

a22/8 + 1
)

}
guarantee the convergence of the integral below. In particular, if a2 = 0 this
becomes a1 > −1.

Theorem 3.1. Define

(3.1) M8(a1, a2; r) :=

∫

∞

0

(

x4

x8 + a2x6 + 2a1x4 + a2x2 + 1

)r

dx,

where r ∈ N. Then

(3.2) M8(a1, a2; r) = c1/4−rN0,4

(

a2 + 4

2
√
c

; r − 1

)

,

where c = 2(a1 + a2 + 1).

Proof. The change of variable x 7→ 1/x yields a new form of the integral M8:

(3.3) M8(a1, a2; r) =

∫

∞

0

(

x4

x8 + a2x6 + 2a1x4 + a2x2 + 1

)r
dx

x2
.

Computing the average of these two forms and letting x = tan θ and then ψ = 2θ
produces

M8(a1, a2; r) = 2−r+1

∫ π

0

(1− C)2r−1 dψ

[ (a1 − a2 + 1)C2 + 7(2− a1 − a2)C + (17 + 3a2 + a1) ]
r ,

where C = cosψ. The substitution z = cot ψ then gives

(3.4) M8(a1, a2; r) = 2−r+1

∫

∞

0

dz

(8z4 + 2(a2 + 4)z2 + (a1 + a2 + 1))
r .

The change of variable z 7→ (8/(a1 + a2 + 1))1/4t and scaling (1.6) yield (3.2). �

The special case a2 = 0 and r = 1 gives the value of T4(a).

Corollary 3.2. The integral T4(a) is given by

(3.5) T4(a) =
π

29/4
√
a+ 1

√√
2 +

√
a+ 1

=
π

29/4

[√
2−

√
1 + a

]1/2

√
1− a2

.

Proof. Theorem 3.1 gives

(3.6) T4(a) = c1/4N0,4

(

2√
c
, 0

)

,

and the result follows from (1.6). �



4 VICTOR H. MOLL

Corollary 3.3. For a > −1, the identity T2(a) = T4(a) holds.

Proof. The change of variables x 7→ 1/x gives the result. �

It does not seem possible to obtain an expression for the remaining integral

(3.7) T0(a) =

∫

∞

0

dx

x8 + 2ax4 + 1

by the previous methods. For a different approach, let t = x4 to obtain

(3.8) T0(a) =
1

4

∫

∞

0

t−3/4 dt

t2 + 2at+ 1
.

This integral is a special case of entry 3.252.11 in [6]

(3.9)

∫

∞

0

zν−1 dz

(z2 + 2az + 1)
µ+1/2

=
2µΓ(1 + µ)B(−ν + 2µ+ 1, ν)P−µ

µ−ν(a)

(a2 − 1)µ/2

where Pµ
ν (z) is the associated Legendre function. This is a special function with

hypergeometric representation

(3.10) Pµ
ν (a) =

1

Γ(1− µ)

(

a+ 1

a− 1

)µ/2

2F1

(−ν, ν + 1

1− µ

∣

∣

∣

∣

1− a

2

)

given in entry 8.702 of [6]. This yields

(3.11)

∫

∞

0

zν−1 dz

(z2 + 2az + 1)µ+1/2
=

2µB(2µ+ 1− ν, ν)

(a+ 1)µ
2F1

(

ν − µ, 1 + µ− ν

1 + µ

∣

∣

∣

∣

1− a

2

)

.

Using the parameters ν = 1

4
and µ = 1

2
, the expression (3.8) becomes

(3.12) T0(a) =
3π

8
√
a+ 1

2F1

(

− 1

4
, 5
4

3

2

∣

∣

∣

∣

1− a

2

)

.

The functional equation Γ(x)Γ(1− x) = π/ sinπx and Γ(x+ 1) = xΓ(x) have been
used in the simplification.

The final step uses entry 9.121.30 of [6]

(3.13) 2F1

(

1 + n
2
, 1− n

2

3

2

∣

∣

∣

∣

z2

)

=
sin(n arcsin z)

nz
√
1− z2

with n = 5/2 and z =
√

(1− a)/2 to obtain

(3.14) T0(a) =
π
√
2

4
√
1− a2

sin

(

3

2
arcsin

√

1− a

2

)

.

Using the identity sin(3u) = 3 sinu− 4 sin3 u gives the final expression for T0(a).

Proposition 3.4. The integral T0(a) is given by

T0(a) =
π

29/4
√
1− a2

[√
2−

√
1 + a

]1/2 [

1 +
√
2
√
1 + a

]

(3.15)

= T4(a)
[

1 +
√
2
√
1 + a

]

.
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The values of the integrals Tk(a) produce the value of I2(p, q).

Theorem 3.5. Let p, q > 0. Then the integral

(3.16) I2(p, q) =

∫

∞

−∞

x4 − p+ qx2

(x4 − p)2 + (qx2)2
dx

vanishes.

Proof. Lemma 2.2 is now used to evaluate I2(p, q) with a = q2/2p2 − 1. The factor

(3.17) 1 +
√
2
√
1 + a = 1 + q/

√
p

gives

I2(p, q) = 2p−3/4T4(a) + 2qp−5/4T2(a)− 2p−3/4T0(a)(3.18)

= 2T4(a)
[

p−3/4 + qp−5/4 − p−3/4 (1 + q/
√
p)
]

= 0,

as claimed. �

The values of Tk(a) gives a generalization of the vanishing of I2(p, q).

Theorem 3.6. Assume (A
√
p+B)p+ (

√
p+ q)C = 0. Then

(3.19)

∫

∞

−∞

Ax4 +Bx2 + C

(x4 − p)2 + (qx2)2
dx = 0.
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