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An elementary evaluation of a quartic integral

George Boros, Victor H. Moll, and Sarah Riley

Abstract. We provide an elementary evaluation for the integral

N0,4(a; m) :=

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1

where m ∈ N and a ∈ (−1,∞):

N0,4(a; m) =
π

2m+3/2(a + 1)m+1/2
Pm(a)

for Pm(a) a polynomial in a.

1. Introduction

Honors Integral Calculus is a course taught at Tulane University to the best in-
coming students. Most of them are proficient at the mechanical aspects of single
variable Calculus. In the discussion on definite integrals we encouraged the students
to use both tables of integrals (such as Gradshteyn and Ryzhik [10]) and the symbolic
integration package Mathematica 5.1 as sources of interesting problems and also as
checks for the material presented in class.

After covering techniques of integration we looked at Wallis formula (2.1) and
observed that the numbers generated are rational multiples of π with denominators
a pure power of 2. This prompted a discussion of the divisibility properties of the
binomial coefficients. We proved that the central binomial coefficients Cm are always
even and that 1

2Cm is odd if and only if m is a power of 2; the proof we gave is outlined
in Section 3. A direct Mathematica calculation of Wallis integral gives (4.7), which
leads naturally to a discussion of Legendre’s relation (4.8).

The trigonometric form of Wallis’s integral can also be used to discuss the evalu-
ation of some finite sums. In Section 2 we discuss the sum

[m/2]∑

i=0

2−2i

(
m

2i

)(
2i

i

)
= 2−m

(
2m

m

)
(1.1)
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that appears in a new proof of Wallis’ formula. This result provides an excellent
opportunity to introduce students to the wonderful world of proving identities by
machine, which is described in the beautiful book [13] where the sum (1.1) is the first
example (p. 113). Details are given in Section 2.

At this point we were asked if it was possible to evaluate the more general integral

Jn,m :=
∫ ∞

0

dx

(xn + 1)m+1
.

This requires the introduction of the beta function, and in Section 4 we review the
properties of Γ and B that are needed to demonstrate the evaluation

J4,m :=
∫ ∞

0

dx

(x4 + 1)m+1
=

π

m! 22m+3/2

m∏

k=1

(4k − 1).(1.2)

We then asked our students to consider the integral

N0,4(a; m) :=
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
,(1.3)

which is a natural generalization of the integral in (1.2). We have presented a proof
of the formula

N0,4(a; m) =
π

2m+3/2(a + 1)m+1/2
Pm(a)(1.4)

in [3] using hypergeometric functions, and in [5] we proved it as a consequence of the
Taylor series expansion

√
a +

√
1 + c =

√
a + 1 +

1
π
√

2

∞∑

k=1

(−1)k−1

k
N0,4(a; k − 1) ck.(1.5)

The goal of this paper is to present a completely elementary proof of (1.4).
Many more examples of interesting Mathematics encountered while trying to eval-

uate definite integrals can be found in our book Irresistible Integrals: Symbolics, Anal-
ysis and Experiments in the Evaluation of Integrals. The motivation of the work pre-
sented here and in [6] is to provide all proofs of the evaluations appearing in the
table [10]. This table contains a large number of formulas but the Mathematics be-
hind their proofs is not directly available. In each new edition, the editors include
additional evaluations and the number of integrals evaluated there is very large. In
our task to prove them we have chosen first those that are connected to our work. For
example, in the last edition (in the year 2000) one finds a beautiful formula: let

u(x) = 1 +
4x2

3(1 + x2)2
,(1.6)

then [10, no. 3.248.5] states that
∫ ∞

0

dx

(1 + x2)3/2

√
u(x) +

√
u(x)

=
π

2
√

6
.(1.7)
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This is appealing to us due to our work on the double square root function that
produced (1.5). Unfortunately (1.7) is incorrect. This error now yields two new
problems.
The direct problem: find a variation of the right hand side in (1.7) that is the correct
answer for the definite integral.
The inverse problem: find a variation of the integrand that integrates to π/2

√
6.

The inverse problem deals with the issue of typos: perhaps the number 4 appear-
ing in the integrand in (1.7) should have been a 14.

We cannot solve either one of them.

2. Wallis formula

We now show that

J2,m =
∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m

m

)
,(2.1)

where m is a nonnegative integer. The change of variables x = tan θ converts J2,m to
its trigonometric form

J2,m =
∫ π/2

0

cos2m θ dθ =
π

22m+1

(
2m

m

)
,(2.2)

which is known as Wallis formula. The proof of (2.2) is elementary and sometimes
found in calculus books (see e. g. [11, page 492]). It consists of first writing cos2 θ =
1− sin2 θ and using integration by parts to obtain the recursion

J2,m =
2m− 1

2m
J2,m−1,(2.3)

and then verifying that the right side of (2.2) satisfies the same recursion and that
both sides yield π/2 for m = 0.

In order to motivate the calculations described in Section 6, we present a new
proof of Wallis formula. We have

J2,m =
∫ π/2

0

cos2m θ dθ =
∫ π/2

0

(
1 + cos 2θ

2

)m

dθ.

Now introduce ψ = 2θ and expand and simplify the result by observing that the odd
powers of cosine integrate to zero. The inductive proof of (2.2) requires

J2,m = 2−m

[m/2]∑

i=0

(
m

2i

)
J2,i.(2.4)

Note that J2,m is uniquely determined by (2.4) along with the initial value J2,0 = π/2.
Thus (2.2) now follows from the identity

f(m) :=
[m/2]∑

i=0

2−2i

(
m

2i

)(
2i

i

)
= 2−m

(
2m

m

)
(2.5)
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since (2.5) can be written as

Am = 2−m

[m/2]∑

i=0

(
m

2i

)
Ai,

where

Ai =
π

22i+1

(
2i

i

)
.

It remains to verify the identity (2.5). This can be done mechanically using the
theory developed by Wilf and Zeilberger, which is explained in [12, 13]; the sum in
(2.5) is the example used in [13] (page 113) to illustrate their method. The command

ct(binomial(m, 2i) binomial(2i, i)2−2i, 1, i,m, N)

produces

f(m + 1) =
2m + 1
m + 1

f(m),(2.6)

and one checks that 2−m
(
2m
m

)
satisfies the same recursion. Note that (2.3) and (2.6)

are equivalent since

J2,m =
π

2m+1
f(m).

3. The quadratic denominators

The expression (2.1) shows that the integral J2,m is a rational multiple of π with
denominator a pure power of 2. We now show that the central binomial coefficient Cm

appearing in (2.1) is also even, so the power of 2 in the denominator is at most 2m,
and that this bound is optimal because it is possible for 1

2Cm to be odd. We introduce
the notation ν2(n) for the exponent of 2 that exactly divides n.

Proposition 3.1. The central binomial coefficient Cm is even, and 1
2Cm is odd

precisely when m is a power of 2.

Proof. The proof is based on the expression for the power of 2 that divides m!.
This is given by

ν2(m!) =
∞∑

k=1

[ m

2k

]
,(3.1)

which is easy to see. In the product defining m! one can divide out every even number
by 2, and there are [m/2] such numbers. In the remaining number there are [m/4]
even ones (these were multiples of 4 to begin with), and so on. Note that the sum is
finite.

Now

ν2((2m)!) =
∞∑

k=1

[ m

2k−1

]
=

∞∑

k=0

[ m

2k

]
= m + ν2(m!),

so that

ν2(Cm) = m− ν2(m!).(3.2)
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Thus 1
2Cm is odd if and only if

∞∑

k=1

[ m

2k

]
= m− 1.(3.3)

We claim that m in (3.3) can be replaced by its odd part. Indeed, writing m = 2a · b
with a and b positive integers and b odd, (3.3) is equivalent to

2a · b− 1 =
∞∑

k=1

[
b

2k−a

]
=

∞∑

k=1−a

[
b

2k

]
=

0∑

k=1−a

[
b

2k

]
+

∞∑

k=1

[
b

2k

]

= b(2a − 1) +
∞∑

k=1

[
b

2k

]
,

i. e. to
∞∑

k=1

[
b

2k

]
= b− 1.(3.4)

It remains to show that b = 1. Clearly (3.4) holds for b = 1. If b > 1, then there
exists a positive integer N such that 2N < b < 2N+1, and (3.4) becomes

N∑

k=1

[
b

2k

]
= b− 1,(3.5)

but for b > 3 (and odd),
N∑

k=1

[
b

2k

]
=

N∑

k=1

[
b− 1
2k

]
6 (b− 1)(1− 2−N ) 6 b− 2.

We conclude that b = 1 and thus that m is a power of 2. ¤
An alternate proof of the proposition follows from the following facts:

a) m > ν2(m!) (this follows directly from (3.2)).
b) ν2((2n)!) = 2n−1 + 2n−2 + · · ·+ 1 = 2n − 1 (this follows directly from (3.1).
c) If a is the largest integer such that m = 2a + b, then ν2(m!) = ν2((2a)!) + ν2(b!) =
2a − 1 + ν2(b!) (we leave this as an exercise).

The proof of the proposition is now immediate, since for m = 2a,

ν2(Cm) = 2a − ν2(2a!) = 2a − (2a − 1) = 1,

and for m = 2a + b (0 < b < 2a),

ν2(Cm) = 2a + b− ν2((2a + b)!)
= 2a + b− (2a − 1 + ν2(b!))
> b + 1− b = 1.

A generalization of c) is the following formula for ν2(m!) due to Legendre:

ν2(m!) = m− s2(m),(3.6)

where s2(m) is the sum of the binary digits of m. It follows that ν2(Cm) = s2(m) and
we have a third proof of Proposition 3.1.
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4. Gamma and Beta functions

In order to generalize the notion of factorials, Euler [9] introduced two functions:
the gamma function, defined by

Γ(x) =
∫ ∞

0

e−ttx−1 dt,(4.1)

and the beta function, given by

B(x, y) =
∫ 1

0

tx−1(1− t)y−1 dt.(4.2)

The history of these functions is presented in [8].
Integration by parts produces the functional equation

Γ(x + 1) = xΓ(x),(4.3)

and since Γ(1) = 1, we see that

Γ(m) = (m− 1)!

for m a positive integer.
Among the many representations for these functions, we mention

B(x, y) =
∫ ∞

0

tx−1

(1 + t)x+y
dt,(4.4)

which is obtained from (4.2) via the change of variable t 7→ t/(t + 1). We employ two
other properties of Γ and B:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

(4.5)

and

Γ(x) Γ(1− x) =
π

sin πx
.(4.6)

Elementary proofs of (4.5) and (4.6) can be found in [7] and [1, page 71], respectively.
A Mathematica calculation of J2,m yields

J2,m =
√

π

2
Γ(m + 1/2)
Γ(m + 1)

,(4.7)

from which we see the connection between J2,m and the functions Γ and B, and
combining (4.7) with (2.1) gives Legendre’s relation,

Γ(m + 1/2) =
Γ(2m)Γ(1/2)
Γ(m)22m−1

.(4.8)

It can easily be shown that (4.7) and (4.8) are also true for noninteger values of
m (m > −1/2 and m > 0 respectively).
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5. A Beta function calculation

We next evaluate an extension of (2.1),

J4,m =
∫ ∞

0

dx

(x4 + 1)m+1
.(5.1)

The change of variables t = x4 and and (4.4) yield

J4,m =
1
4
B

(
1
4 , m + 3

4

)
.

Using (4.5) and (4.3) we obtain

J4,m =
1

4m!
Γ(1/4)Γ(m + 3/4) =

Γ(3/4)Γ(1/4)
m! 22m+2

×
m∏

k=1

(4k − 1).

The symmetry formula (4.6) gives Γ(1/4)Γ(3/4) = π
√

2, so we conclude that

∫ ∞

0

dx

(x4 + 1)m+1
=

π

m!22m+3/2

m∏

k=1

(4k − 1).(5.2)

6. Reduction to a polynomial

In this section we prove that, apart from a simple algebraic factor, the integral
N0,4(a; m) is a polynomial in a.

Theorem 6.1. Let

N0,4(a; m) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1

and define

Pm(a) =
1
π

2m+3/2(a + 1)m+1/2N0,4(a; m).

Then Pm(a) is a polynomial in a of degree m with rational coefficients, and is given
by

Pm(a) =
m∑

j=0

(
2m + 1

2j

)
(a + 1)j

m−j∑

k=0

(
m− j

k

)(
2(m− k)
m− k

)
2−3(m−k)(a− 1)m−k−j .

(6.1)
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We start with the substitutions x = tan θ and u = 2θ, which yield

N0,4(a; m) =
∫ π/2

0

(
cos4 θ

sin4 θ + 2a sin2 θ cos2 θ + cos4 θ

)m+1

× dθ

cos2 θ

= 2−(m+1)

∫ π

0

(
(1 + cos u)2

(1 + a) + (1− a) cos2 u

)m+1

× du

1 + cos u

= 2−(m+1)
m∑

j=0

(
2m + 1

2j

)

×
∫ π

0

[
(1 + a) + (1− a) cos2 u

]−(m+1)
cos2j u du,

(6.2)

where in the last step we have used the fact that
∫ π

0

[
(1 + a) + (1− a) cos2 u

]−(m+1)
cosj u du = 0

for odd j.
We now compute the integral appearing in (6.2). Let

Ij
m(a) =

∫ π

0

[
(1 + a) + (1− a) cos2 u

]−(m+1)
cos2j u du.

The substitution v = 2u then gives

Ij
m(a) = 2m−j

∫ 2π

0

[(3 + a) + (1− a) cos v]−(m+1) (1 + cos v)j dv

= 2m−j+1

∫ π

0

[(3 + a) + (1− a) cos v]−(m+1) (1 + cos v)j dv,

where we have used the symmetry of cosine about v = π in the last step.
For each fixed value of the index j, the integrand is a rational function of cos v,

so the substitution z = tan(v/2) is a natural one. It yields

Ij
m(a) = 2×

∫ ∞

0

[
2 + (1 + a)z2

]−(m+1) × (1 + z2)m−jdz

= 2(1 + a)−(m+1)

∫ ∞

0

m−j∑

k=0

(
m− j

k

) [
z2 +

2
1 + a

]−m−1+k [
a− 1
a + 1

]m−j−k

dz.

= π × 2−1/2−3m(1 + a)−m−1/2 ×(6.3)

×
m−j∑

k=0

(
2(m− k)
m− k

)(
m− j

k

)
23k(a + 1)j(a− 1)m−j−k
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where we have used z =
√

2/(1 + a) tan ϕ and Wallis’s formula (2.2). Thus

N0,4(a; m) = π ×
m∑

j=0

(
2m + 1

2j

)
(a + 1)−m−1/2+j ×

×
m−j∑

k=0

(
m− j

k

)(
2(m− k)
m− k

)
23k−4m−3/2(a− 1)m−j−k.(6.4)

The expression (6.4) given for N0,4(a; m) allows the explicit evaluation of this integral
for a given value of the parameter a.

Some examples. Using Theorem 6.1 we obtain

P0(a) = 1 P1(a) = 1
2 (2a + 3)

P2(a) = 3
8 (4a2 + 10a + 7) P3(a) = 1

16 (40a3 + 140a2 + 172a + 77)

so that

N0,4(a, 0) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)
=

π

23/2(a + 1)1/2
· 1

N0,4(a; 1) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)2
=

π

27/2(a + 1)3/2
· (2a + 3)

N0,4(a; 2) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)3
=

3π

213/2(a + 1)5/2
· (4a2 + 10a + 7)

N0,4(a; 3) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)4
=

π

217/2(a + 1)7/2
· (40a3 + 140a2 + 172a + 77).

7. A triple sum for the coefficients

We now write

Pm(a) =
m∑

l=0

dl(m)al

and derive an expression for the coefficients dl(m) in terms of m and l.
We start by reversing the order of summation in (6.1) to produce

Pm(a) =
m∑

l=0

m∑

k=0

m∑
ν=0

m∑

j=0

2−3k

(
2k

k

)(
2m + 1

2ν

)(
m− ν

m− k

)(
ν

j

)(
k − ν

l − j

)

× (−1)k−ν−l+jal.(7.1)

where we have extended all the sums to m (this is valid since the added terms vanish).
The last step is to restrict the ranges of the sums in (7.1) to nonzero terms.

Consideration of the binomial coeffcients involved leads to a) ν + l− j 6 k 6 m (from(
k−ν
l−j

)
), b) j 6 ν 6 k − l + j 6 m − l + j (from

(
ν
j

)
and

(
k−ν
l−j

)
), c) 0 6 j 6 l (from
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(
k−ν
l−j

)
), and d) 0 6 l 6 m, so that (7.1) becomes

Pm(a) =
m∑

l=0

l∑

j=0

m−l+j∑

ν=j

m∑

k=ν+l−j

2−3k

(
2k

k

)(
2m + 1

2ν

)(
m− ν

m− k

)(
ν

j

)(
k − ν

l − j

)

× (−1)k−ν−l+jal,(7.2)

and thus,

dl(m) =
l∑

j=0

m−l+j∑

ν=j

m∑

k=ν+l−j

2−3k

(
2k

k

)(
2m + 1

2ν

)(
m− ν

m− k

)(
ν

j

)(
k − ν

l − j

)

× (−1)k−ν−l+j .(7.3)

For each pair of values (m, l), the evaluation of (7.3) requires the calculation of (l +
1)(m− l + 1)(m− l + 2)/2 terms, each involving a product of 5 binomial coefficients.
The calculations of Pm(a) and N0,4(a; m) therefore amount to a quadruple sum with
(m + 1)(m3 + 9m2 + 26m + 24)/24 ∼ m4/24 terms.

8. The quartic denominators

The expression (7.3) for the coefficients of Pm(a) makes it clear that the denomi-
nator of dl(m) is a power of 2. Define dmax to be the maximum exponent of 2 that
appears in the denominator of dl(m). From (7.3) we immediately get the crude bound

dmax 6 3m.

The largest contribution to dmax comes from the term k = m, but this coefficient
is multiplied by the central binomial coefficient Cm. In Section 3 we showed that
ν2(Cm) = m− ν2(m!), so the crude bound can be improved to

dmax 6 D := 2m +
∞∑

i=1

[m

2i

]
.

Optimal bounds for ν2(m!) have been provided by Berndt-Bhargava [2, page 653],
yielding

3m− log(m + 1)
log 2

6 D 6 3m− 1.

We conclude that the contribution of Cm to the denominators of the coefficients of
Pm(a) is asymptotically negligible as m → ∞. The sharp bound dmax 6 2m − 1 is
discussed in the next section. We have been unable to use elementary methods to
prove this result.
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9. A single sum formula for Pm(a)

The representations

Pm(a) = 2−2m
m∑

k=0

2k

(
2m− 2k

m− k

)(
m + k

m

)
(a + 1)k(9.1)

= 2−2m
m∑

l=0

m∑

k=l

2k

(
2m− 2k

m− k

)(
m + k

m

)(
k

l

)
al

are significant improvements over (6.1) and (7.2), and are presented in [3] and [5].
Note that the coefficients of Pm(a) are positive and given by

dl(m) = 2−2m
m∑

k=l

2k

(
2m− 2k

m− k

)(
m + k

m

)(
k

l

)
,(9.2)

the denominators of which are bounded by 22m. Every term in the sum (9.2) is even
with the possible exception of the first term when l = 0. This term is the central
binomial coefficient Cm. From Proposition 3.1 we know that Cm is even and that
1
2Cm can be odd. We conclude that the bound is 22m−1 and that this is optimal:

Proposition 9.1. The denominators of Pm(a) are powers of 2 bounded by 22m−1.

As a result of (9.1), the integral N0,4(a; m) can now be rewritten more simply:

Theorem 9.1. The integral N0,4(a; m) is given explicitly by
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1 =
π

23m+3/2(a + 1)m+1/2

×
m∑

l=0

2k

(
2m− 2k

m− k

)(
m + k

m

)
(a + 1)l

=
π

23m+3/2(a + 1)m+1/2

×
m∑

l=0

m∑

k=l

2k

(
2m− 2k

m− k

)(
m + k

m

)(
k

l

)
al.

We expect that this formula will be included in the next edition of [10].
We give a simple number-theoretic consequence of Theorem 9.1. The special case

a = 0 in (5.2) yields
m∑

k=0

2k

(
2m− 2k

m− k

)(
m + k

m

)
=

2m

m!

m∏

k=1

(4k − 1),(9.3)

and since the left-hand side is an integer, we conclude:

Proposition 9.2. The odd part of m! divides the product
m∏

k=1

(4k − 1).
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10. A finite sum

We have produced two expressions for the polynomial Pm(a), (6.1) and (9.1). The
corresponding formulae for the value Pm(1) lead to

m∑

k=0

2−2k

(
2k

k

)(
2m− k

m

)
=

m∑

k=0

2−2k

(
2k

k

)(
2m + 1

2k

)
.(10.1)

The identity (10.1) can be verified using D. Zeilberger’s package EKHAD [13]. Indeed,
EKHAD tells us that both sides of (10.1) satisfy the recursion

(2m + 3)(2m + 2)f(m + 1) = (4m + 5)(4m + 3)f(m),

and they obviously agree at m = 1. An elementary proof of (10.1) would be desirable.
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