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Abstract. We analyze properties of the 2-adic valuation of an integer se-
quence that originates from an explicit evaluation of a quartic integral. We
also give a combinatorial interpretation of the valuations of this sequence.

1. Introduction

Wallis’s formula

(1.1)

∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(

2m

m

)

is one of the earlier instances of evaluation of definite integrals where the result
contains interesting arithmetical and combinatorial properties. In this paper we
examine such connection for the integral

(1.2) N0,4(a; m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

The condition a > −1 is imposed for convergence. The evaluation

(1.3) N0,4(a, m) =
π

2

Pm(a)

[2(a + 1)]m+
1
2

where

(1.4) Pm(a) =

m
∑

l=0

dl(m)al

with

(1.5) dl(m) = 2−2m
m
∑

k=l

2k

(

2m − 2k

m − k

)(

m + k

m

)(

k

l

)

, 0 ≤ l ≤ m,

appeared in [4]. The reader will find in [2] a survey of the different proofs of
(1.3) and an introduction to the many issues involved in the evaluation of definite
integrals in [8].

The study of combinatorial aspects of the sequence dl(m) was initiated in [3]
where the authors show that dl(m) form a unimodal sequence, that is, there exists
and index l∗ such that d0(m) ≤ . . . ≤ dl∗(m) and dl∗(m) ≥ . . . ≥ dm(m). The fact
that dl(m) satisfies the stronger condition of logconcavity dl−1(m)dl+1(m) ≤ d2

l (m)
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has been recently established in [6]. We consider here arithmetical properties of the
sequence dl,m. It is more convenient to analyze the auxiliary sequence

(1.6) Al,m = l! m! 2m+ldl,m =
l! m!

2m−l

m
∑

k=l

2k

(

2m− 2k

m − k

)(

m + k

m

)(

k

l

)

for m ∈ N and 0 ≤ l ≤ m. The integral (1.2) is then given explicitly as

(1.7) N0,4(a; m) =
π√

2m! (4(2a + 1))m+1/2

m
∑

l=0

Al,m
al

l!
.

In [5] it is shown that Al,m ∈ N. Observe that the computation of Al,m using
(1.6) is more efficient if l is close to m. For instance,

(1.8) Am,m = 2m(2m)! and Am−1,m = 2m−1(2m − 1)!(2m + 1).

A second method to compute Al,m, efficient now when l is small, has been discussed
in [5]. There, it is shown that Al,m is a linear combination (with polynomial
coefficients) of

(1.9)
m
∏

k=1

(4k − 1) and
m
∏

k=1

(4k + 1).

For example,

(1.10) A0,m =

m
∏

k=1

(4k − 1) and A1,m = (2m + 1)

m
∏

k=1

(4k − 1) −
m
∏

k=1

(4k + 1).

The results described in this paper started with some empirical observations on
the behavior of the 2-adic valuation of Al,m, i.e. ν2(Al,m). Recall that, for x ∈ N,
the 2-adic valuation ν2(x) is the highest power of 2 that divides x. This is extended
to x = a/b ∈ Q via ν2(x) = ν2(a) − ν2(b). From (1.10) it follows that A0,m is odd,
so ν2(A0,m) = 0. Moreover,

(1.11) ν2(A1,m) = ν2(m(m + 1)) + 1,

i.e., the main result of [5]. We present as Theorem 2.1, an expression for ν2(Al,m)
that generalizes (1.11).

The study of the sequence

(1.12) X(l) := {ν2(Al,l+m−1) : m ≥ 1}
requires the introduction of two operators, F and T , defined in (4.1) and (4.2),
respectively. The iteration of these operators creates an integer vector

Ω(l) :=
{

n1, n2, n3, · · · , nω(l)

}

, with ni ∈ N,(1.13)

associated to the index l ∈ N. We call Ω(l) the reduction sequence of l. See (4.2)
for the precise definition of the integers nj . The structure of X(l) motivates the
following definition.

Definition 1.1. Let s ∈ N, s ≥ 2. We say that a sequence {aj : j ∈ N} is simple of
length s (or s-simple) if s is the largest integer such that for each t ∈ {0, 1, 2, · · · },
we have

(1.14) ast+1 = ast+2 = · · · = as(t+1).

The sequence {aj : j ∈ N} is said to have a block structure if it is s-simple for some
s ≥ 2.



2-ADIC VALUATION 3

Section 2 presents two proofs of the expression for ν2(Al,m). Section 3 shows that

X(l) is a simple sequence of length 21+ν2(l). In Section 4 an algorithm generating
the vector Ω(l) is described in detail. A combinatorial interpretation of Ω(l), as the
composition of l, is provided in Section 5. Theorem 5.5 gives Ω(l) in terms of the
dyadic expansion of l. More precisely, if {k1, · · · , kn : 0 ≤ k1 < k2 < · · · < kn} is
the unique collection of distinct nonnegative integers such that l =

∑n
i=1 2ki , then

the reduction sequence Ω(l) of l is {k1 + 1, k2 − k1, · · · , kn − kn−1}. Finally, the
last section contains a conjecture on symmetries of the graph of ν2(Al,m).

2. The 2-adic valuation of Al,m

In this section we prove that ν2(Al,m) agrees with ν2((m+1− l)2l)+ l. The first
proof actually produces the latter term in a natural way starting from the former.
The second proof employs the WZ-machinery [9] to prove the identity (2.1).

Theorem 2.1. The 2-adic valuation of Al,m satisfies

(2.1) ν2(Al,m) = ν2((m + 1 − l)2l) + l,

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol for k ≥ 1. For
k = 0, we define (a)0 = 1.

Proof. First proof. We have

ν2 (Al,m) = l + ν2

(

m
∑

k=l

Tm,k
(m + k)!

(m − k)! (k − l)!

)

,(2.2)

where

(2.3) Tm,k =
(2m − 2k)!

2m−k (m − k)!
.

The identity

(2.4) Tm,k =
(2(m − k))!

2m−k (m − k)!
= (2m − 2k − 1)(2m− 2k − 3) · · · 3 · 1

shows that Tm,k is an odd integer. Then (2.2) can be written as

ν2(Al,m) = l + ν2

(

m−l
∑

k=0

Tm,l+k
(m + k + l)!

(m − k − l)! k!

)

= l + ν2

(

m−l
∑

k=0

Tm,l+k
(m − k − l + 1)2k+2l

k!

)

.

The term corresponding to k = 0 is singled out as we write

ν2(Al,m) = l + ν2

(

Tm,l(m − l + 1)2l +
m−l
∑

k=1

Tm,l+k
(m − k − l + 1)2k+2l

k!

)

.

The claim

ν2

(

(m − k − l + 1)2k+2l

k!

)

> ν2((m − l + 1)2l)(2.5)

for any k, 1 ≤ k ≤ m − l, will complete the proof.
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To prove (2.5) we use the identity

(m − k − l + 1)2k+2l

k!
= (m − l + 1)2l ·

(m − l − k + 1)k (m + l + 1)k

k!

and the fact that the product of k consecutive numbers is always divisible by k!.
This follows from the identity

(2.6)
(a)k

k!
=

(

a + k − 1

k

)

.

Now if m + l is odd,

(2.7) ν2

(

(m − l − k + 1)k

k!

)

≥ 0 and ν2((m + l + 1)k) > 0,

and if m + l is even

(2.8) ν2

(

(m + l + 1)k

k!

)

≥ 0 and ν2((m − l − k + 1)k) > 0.

This proves (2.5) and establishes the theorem.

Second proof. Define the numbers

Bl,m :=
Al,m

2l(m + 1 − l)2l
.(2.9)

We need to prove that Bl,m is odd. The WZ-method [9] provides the recurrence

Bl−1,m = (2m + 1)Bl,m − (m − l)(m + l + 1)Bl+1,m, 1 ≤ l ≤ m − 1.

Since the initial values Bm,m = 1 and Bm−1,m = 2m + 1 are odd, it follows that
Bl,m is an odd integer. �

3. Properties of the function ν2(Al,m)

Let l ∈ N ∪ {0} be fixed. In this section we describe properties of the function
ν2(Al,m). In particular, we show that each of these sequences has a block structure.

Theorem 3.1. Let l ∈ N ∪ {0} be fixed. Then for m ≥ l, we have

ν2(Al,m+1) − ν2(Al,m) = ν2(m + l + 1) − ν2(m − l + 1).(3.1)

Proof. From (2.1) and (a)k = (a + k − 1)!/(a − 1)!, we have

(3.2) ν2(Al,m) = ν2

(

(m + l)!

(m − l)!

)

+ l.

This implies

ν2(Al,m+1) − ν2(Al,m) = ν2

(

(m + l + 1)!

(m − l + 1)!

)

− ν2

(

(m + l)!

(m − l)!

)

= ν2

(

(m + l + 1)! (m − l)!

(m − l + 1)! (m + l)!

)

= ν2(m + l + 1) − ν2(m − l + 1).

�

The next corollary is a special case of Theorem 3.1.
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Corollary 3.2. The sequence ν2(Al,m) satisfies
1) ν2(Al,l+1) = ν2(Al,l).
2) For l even,

ν2(Al,l+3) = ν2(Al,l+2) = ν2(Al,l+1) = ν2(Al,l).

3) The sequence ν2(A1,m) is 2-simple; i.e., ν2(A1,m+1) = ν2(A1,m) for m odd. In
fact,

A1,m = {2, 2, 3, 3, 2, 2, 4, 4, 2, 2, . . .}.

Fix k, l ∈ N and let µ := 1 + ν2(l). Define the following sets

(3.3) Ck,l := {l + k · 2µ + j : 0 ≤ j ≤ 2µ − 1 },
which will be instrumental in proving the main result of this section; i.e., {ν2(Al,m)}
is 21+ν2(l)-simple.

We begin by showing that these sets form a partition of N. Moreover, for fixed
k, l ∈ N the set Ck,l has cardinality 2µ and the 2-adic valuation of {Al,m : m ∈ Ck,l}
is constant. For example, if l ∈ N is odd, then µ = 1 and

(3.4) Ck,l = {l + 2k, l + 2k + 1}.
The next result is immediate.

Lemma 3.3. Let l ∈ N be fixed. The sets {Ck,l : k ≥ 0} form a disjoint partition
of N; namely,

(3.5) {m ∈ N : m ≥ l} =
⋃

k≥0

Ck,l,

and Cr,l ∩ Ct,l = ∅, whenever r 6= t.

Lemma 3.4. Fix l ∈ N and let µ = ν2(2l).
1) The sequence {ν2(Al,m) : m ∈ Ck,l} is constant. We denote this value by
ν2(Ck,l).
2) For k ≥ 0, ν2(Ck+1,l) 6= ν2(Ck,l).

Proof. Suppose 0 ≤ j ≤ 2µ − 2. Since ν2(2l) = µ ≤ ν2(k · 2µ), then

(3.6) ν2(2l + k · 2µ) ≥ ν2(2l) = µ > ν2(j + 1),

because j + 1 < 2µ. Therefore

(3.7) ν2(2l + k · 2µ + j + 1) = ν2(j + 1) = ν2(k · 2µ + j + 1).

Using these facts and (3.1), we obtain

ν2(Al,l+k·2µ+j+1) − ν2(Al,l+k·2µ+j) = ν2(2l + k · 2µ + j + 1) − ν2(k · 2µ + j + 1)

= ν2(j + 1) − ν2(j + 1) = 0

for consecutive values in Ck,l. This proves part 1). To prove part 2), it suffices to
take elements l + k · 2µ + 2µ − 1 ∈ Ck,l and l + (k + 1) · 2µ ∈ Ck+1,l and compare
their 2-adic values. Again by (3.1), we have

ν2(Al,l+(k+1)·2µ ) − ν2(Al,l+(k+1)·2µ−1) = ν2(2l + (k + 1) · 2µ) − ν2((k + 1) · 2µ)

= µ + ν2(2l · 2−µ + k + 1) − µ − ν2(k + 1)

= ν2(2l · 2−µ + k + 1) − ν2(k + 1) 6= 0.

The last step follows from 2l · 2−µ being odd and thus 2l · 2−µ + k + 1 and k + 1
having opposite parities. This completes the proof. �
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Theorem 3.5. For each l ≥ 1, the set {ν2(Al,m) : m ≥ l } is an s-simple sequence,

with s = 21+ν2(l).

Proof. From Lemma 3.3 and Lemma 3.4, we know that ν2(·) maintains a constant
value on each of the disjoint sets Ck,l. The length of each of these blocks is 21+ν2(l).

�

4. The algorithm and its combinatorial interpretation

In this section we describe an algorithm that extracts from the sequence X(1) :=
{ν2(A1,m) : m ≥ 1} its combinatorial information. We begin with the definition of
the operators F and T mentioned in the Introduction.

Definition 4.1. The maps F and T . These are defined by

F ({a1, a2, a3, · · · }) := {a1, a1, a2, a3, · · · },(4.1)

and

T ({a1, a2, a3, · · · }) := {a1, a3, a5, a7, · · · }.(4.2)

We employ the notation

c := {ν2(m) : m ≥ 1} = {0, 1, 0, 2, 0, 1, 0, 3, 0, · · · }.(4.3)

The algorithm:

1) Start with the sequence X(l) := {ν2(Al,l+m−1) : m ≥ 1 } .

2) Find n ∈ N so that the sequence X(l) is 2n-simple. Define Y (l) := T n (X(l)).
At the initial stage, Theorem 3.5 ensures that n = 1 + ν2(l).

3) Introduce the shift Z(l) := Y (l) − c.

4) Define W (l) := F (Z(l)).

If W (l) is a constant sequence, then STOP; otherwise go to step 2) with W instead
of X . Define Xk(l) as the new sequence at the end of the (k − 1)th cycle of this
process, with X1(l) = X(l).

Section 5 contains the justification for the steps of this algorithm. In particular,
we prove that the sequences Xk(l) have a block structure, so they can be used back
in step 1 after each cycle. Theorem 5.3 states that the algorithm finishes in a finite
number of steps and that W (l) is essentially X(j), for some j < l.

Definition 4.2. Let ω(l) be the number of cycles required for the algorithm to
yield a constant sequence and denote by nj the integers appearing in Step 2 of the
algorithm. The integer vector

Ω(l) :=
{

n1, n2, n3, · · · , nω(l)

}

(4.4)

is called the reduction sequence of l. The number ω(l) will be called the reduction
length of l. The constant sequence obtained after ω(l) cycles is called the reduced
constant.
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Table 1. Reduction sequence for 1 ≤ l ≤ 15.

l binary form Ω(l)
4 100 3
5 101 1, 2
6 110 2, 1
7 111 1, 1, 1
8 1000 4
9 1001 1, 3
10 1010 2, 2
11 1011 1, 1, 2
12 1100 3, 1
13 1101 1, 2, 1
14 1110 2, 1, 1
15 1111 1, 1, 1, 1

In Corollary 5.8 we enumerate ω(l) as the number of ones in the binary expansion
of l. Therefore the algorithm yields a constant sequence in a finite number of steps.
In fact, the algorithm terminates after O(log2(l)) cycles as will follow directly from
Corollory 5.8. Table 1 shows the results of the algorithm for 4 ≤ l ≤ 15.

We now provide a combinatorial interpretation of Ω(l). This requires the com-
position of the index l.

Definition 4.3. Let l ∈ N. The composition of l, denoted by Ω1(l), is defined as
follows: write l in binary form. Read the sequence from right to left. The first
part of Ω1(l) is the number of digits up to and including the first 1 read in the
corresponding binary sequence; the second one is the number of additional digits
up to and including the second 1 read, and so on.

Example 4.4. Reading off the values from Table 1, we obtain Ω1(13) = {1, 2, 1}
and Ω1(14) = {2, 1, 1}. Therefore Ω1(13) = Ω(13) and Ω1(14) = Ω(14). Corollary
5.6 shows that this is always true.

The next result describes the formation of Ω1(l) from Ω1 (⌊l/2⌋).
Lemma 4.5. Given the values of Ω1(l) for 2j ≤ l ≤ 2j+1 − 1, the list for 2j+1 ≤
l ≤ 2j+2 − 1 is formed according to the following rule:

l is even: add 1 to the first part of Ω1(l/2) to obtain Ω1(l);

l is odd: prepend a 1 to Ω1

(

l−1
2

)

to obtain Ω1(l).

Proof. Let x1x2 · · ·xt be the binary representation of l. Then x1x2 · · ·xt0 corre-
sponds to 2l. Thus, the first part of Ω1(2l) is increased by 1, due to the extra 0
on the right. The relative position of the remaining 1s stays the same. A similar
argument takes care of Ω1(2l + 1). The extra 1 that is placed at the end of the
binary representation gives the first 1 in Ω1(2l + 1). �

We now relate the 2-adic valuation of Al,m to that of A⌊l/2⌋,m.
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Proposition 4.6. Let

(4.5) λl :=
1 − (−1)l

2
, M0 := ⌊m + λl

2
⌋.

Then

(4.6) ν2(Al,m) = 2l − ⌊l/2⌋+ λlν2(M0 − ⌊l/2⌋) + ν2(A⌊l/2⌋,M0
).

Proof. We present the details for ν2(A2l,2m). Theorem 2.1 gives

ν2(A2l,2m) = ν2((2m − 2l + 1)4l) + 2l

= ν2((2m − 2l + 1)(2m− 2l + 2) · · · (2m + 2l − 1)(2m + 2l)) + 2l

= ν2(2
2l(m − l + 1)(m − l + 2) · · · (m + l)) + 2l

= 4l + ν2((m − l + 1)2l)

= 3l + ν2(Al,m).

A similar calculation shows that

(4.7) ν2(A2l+1,2m) = 3l + 2 + ν2(Al,m) + ν2(m − l).

The general case then follows from Theorem 3.1. �

Corollary 4.7. The 2-adic valuation of Al,m satisfies

(4.8) ν2(Al,m) = 2l + ν2(l!) +
∑

k≥0

λ⌊l/2k⌋ ν2(Mk − ⌊l/2k+1⌋)

where

(4.9) Mk = ⌊m + λl + 2λ⌊l/2⌋ + · · · + 2kλ⌊l/2k⌋

21+k
⌋ = ⌊m +

∑k
n=0 2nλ⌊l/2n⌋

21+k
⌋.

Proof. This is a repeated application of Proposition 4.6. The first term results from

∑

k≥0

(

2⌊ l

2k
⌋ − ⌊ l

2k+1
⌋
)

= 2l +
∑

k≥1

⌊ l

2k
⌋

= 2l + ν2(l!).

�

5. Verification of the Algorithm and the Reduction sequence

In this section we show that the algorithm presented in Section 4 terminates after
a finite numbers of cycles. Moreover, we prove that Ω(l), the reduction sequence of
l, is identical to the composition sequence of l.

Notation: The constant sequences will be denoted by (t) = {t, t, t, . . . }.

Definition 5.1. A sequence (a) = {a1, a2, a3, . . . } is a translate of (b) = {b1, b2, b3, . . . }
if (a) = (b)+(t), for some constant sequence (t). Addition of sequences is performed
term by term.

We first consider the base case l = 1.
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Lemma 5.2. The initial case l = 1 satisfies

(5.1) W (1) = F (T (X(1)) − c) = (2),

where (c) is given in (4.3).

Proof. Since ν2(A1,m) = ν2(m(m + 1)) + 1 and ν2(2m − 1) = 0, we have

T (X(1)) = {ν2((2m − 1)(2m)) + 1 : m ≥ 1} = {ν2(m) + 2 : m ≥ 1} = c + (2).

Then the assertion follows from F ((t)) = (t) for a constant (t). �

Theorem 5.3. The algorithm terminates after finitely many iterations. Further-
more, in each cycle, W (l) is a translate of X(j), for some j < l.

Proof. Start by rewriting the terms in X(l) as

ν2

(

(m − 1 + 2l)!

(m − 1)!

)

+ l = ν2((m− 1 + 2l)(m− 2 + 2l) · · · (m + 1)m) + l, m ≥ 1.

Then, the operator T acts on these to yield (for m ≥ 1)

ν2((2m − 2 + 2l)(2m − 3 + 2l) · · · (2m)(2m − 1)) + l

= ν2((m − 1 + l) · · · (m)) + 2l

= ν2

(

(m − 1 + l)!

(m − 1)!

)

+ 2l.(5.2)

Case I: l is even. From (5.2), we can easily obtain the relation

T (X(l)) = {ν2

(

(m − 1 + l)!

(m − 1)!

)

+ l/2 + t : m ≥ 1} = X(l/2) + (t), t = 3l/2.

Case II: l is odd. Upon subtracting the sequence c = {ν2(m) : m ≥ 1} from (5.2)
we get that

ν2

(

(m + l − 1)!

m!

)

+ 2l = ν2

(

(m + l − 1)!

m!

)

+
l − 1

2
+

3(l − 1)

2
+ 2,

for m ≥ 1. Then, apply the operator F to the last sequence and find

W (l) = {ν2

(

(m − 2 + l)!

(m − 1)!

)

+
l − 1

2
+t : m ≥ 1} = X

(

l − 1

2

)

+(t), t = (3l+1)/2.

Here, we have utilized the property that ν2(r!) = ν2((r − 1)!), when r ≥ 1 is odd.
This justifies that the first term augmented in the sequence, as a result of the ac-
tion of F , coincides with the next term (these are values at m = 1 and m = 2,
respectively).

We can now conclude that in either of the two cases (or a combination thereof), the
index l shrinks dyadically. Thus the reduction algorithm must end in a finite step
into a translate of X(1). Since Lemma 5.2 handles X(1), the proof is completed. �

Corollary 5.4. For general k ∈ N, the sequence Xk(l) is 2nk-simple for some
nk ∈ N.
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Theorem 5.5. Let {k1, · · · , kn : 0 ≤ k1 < k2 < · · · < kn}, be the unique collection
of distinct nonnegative integers such that

(5.3) l =
n
∑

i=1

2ki .

Then the reduction sequence Ω(l) of l is {k1 + 1, k2 − k1, · · · , kn − kn−1}.
Proof. The argument of the proof is to check that the rules of formation for Ω1(l)
also hold for the reduction sequence Ω(l). The proof is divided according to the
parity of l. The case l odd starts with l = 1, where the block length is 2. From
Theorem 2.1 we obtain a constant sequence after iterating the algorithm once. Thus
the algorithm terminates and the reduction sequence for l = 1 is Ω(1) = {1}.

Now consider the general even case: X(2l). Theorem 5.3 shows that applying
T to this sequence yields a translate of X(l). This does not affect the reduction
sequence Ω(l), but the doubling of block length increases the first term of Ω(l) by
1. Therefore

(5.4) Ω(2l) = {k1 + 2, k2 − k1, · · · , kn − kn−1}.
This is precisely what happens to the binary digits of l: if

l =

n
∑

i=1

2ki , then 2l =

n
∑

i=1

2ki+1.

This concludes the argument for even indices.
For the general odd case, X(2l + 1), we apply T , subtract c and then apply F .

Again, by Theorem 5.3, this gives us a translate of X(l). We conclude that, if the
reduction sequence of l is

(5.5) {k1 + 1, k2 − k1, · · · , kn − kn−1},
then that of 2l + 1 is

(5.6) {1, k1 + 1, k2 − k1, · · · , kn − kn−1}.
This is precisely the behavior of Ω1. The proof is complete. �

Corollary 5.6. The reduction sequence Ω(l) associated to an integer l is the se-
quence of compositions of l, that is,

(5.7) Ω(l) = Ω1(l).

Corollary 5.7. The reduced constant is 2l + ν2(l!) = ν2(Al,l).

Proof. In Corollary 4.7, subtract the last term as per the reduction algorithm. �

Corollary 5.8. The set Ω(l) has cardinality

(5.8) s2(l) = the number of ones in the binary expansion of l.

Note. The function s2(l) defined in (5.8) has recently appeared in a different
divisibility problem. Lengyel [7] conjectured, and De Wannemacker [10] proved,
that the 2-adic valuation of the Stirling numbers of the second kind S(n, k) is given
by

(5.9) ν2(S(2n, k)) = s2(k) − 1.

The reader will find in [1] a general study of the 2-adic valuation of Stirling numbers.
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6. A symmetry conjecture on the graphs of ν2(Al,m)

The graphs of the function ν2(Al,m), where we take every other 21+ν2(l)-element
to reduce the repeating blocks to a single value, are shown in the next figures.
We conjecture that these graphs have a symmetry property generated by what we
call an initial segment from which the rest is determined by adding a central piece
followed by a folding rule. We conclude with sample pictures of this phenomenon.

Example 6.1. For l = 1, the first few values of the reduced table are

{2, 3, 2, 4, 2, 3, 2, 5, 2, 3, . . .}.

0 10 20 30 40 50 60

3

4

5

6

Figure 1. The 2-adic valuation of A1,m

The ingredients are:

initial segment: {2, 3, 2},

central piece: the value at the center of the initial segment, namely 3.

rules of formation: start with the initial segment and add 1 to the central piece
and reflect.

This produces the sequence

{2, 3, 2} → {2, 3, 2, 4} → {2, 3, 2, 4, 2, 3, 2}→ {2, 3, 2, 4, 2, 3, 2, 5}→
→ {2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}.

The details are shown in Figure 1.

Remark. We have found no way to predict the initial segment nor the central
piece. Figure 2 shows the beginning of the case l = 9. From here one could be
tempted to anticipate that this graph extends as in the case l = 1. This is not
correct however, as can be seen in Figure 3. In fact, the initial segment is depicted
in Figure 3 and its extension is shown in Figure 4.

The initial pattern can be quite elaborate. Figure 5 illustrates the case l = 53
and Figure 6 shows it for l = 59. A complete description of these initial segments
is open to further exploration.
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10 12 14 16 18 20
25.0

25.5

26.0

26.5

27.0

Figure 2. The beginning for l = 9

10 20 30 40 50
25

26

27

28

29

Figure 3. The continuation of l = 9

50 100 150 200
25

26

27

28

29

30

31

Figure 4. The pattern for l = 9 persists

Acknowledgements. The last author acknowledges the partial support of NSF-
DMS 0409968. The second author was partially supported as a graduate student
by the same grant. The authors wish to thank Aaron Jaggard for identifying their
data with the composition sequence.

References

[1] T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of Stirling numbers. Experi-

mental Mathematics, to appear in 2008.
[2] T. Amdeberhan and V. Moll. A formula for a quartic integral: a survey of old proofs and

some new ones. Ramanujan Journal, to appear in 2008.
[3] G. Boros and V. Moll. A criterion for unimodality. Elec. Jour. Comb., 6:1–6, 1999.



2-ADIC VALUATION 13

60 80 100 120 140 160 180 200
155

156

157

158

159

160

161

Figure 5. The initial pattern for l = 53

60 80 100 120 140 160 180
172

173

174

175

176

177

178

Figure 6. The initial pattern for l = 59

[4] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. Jour. Comp. Applied

Math., 106:361–368, 1999.
[5] G. Boros, V. Moll, and J. Shallit. The 2-adic valuation of the coefficients of a polynomial.

Scientia, Series A, 7:37–50, 2001.
[6] M. Kauers and P. Paule. A computer proof of Moll’s log-concavity conjecture. Proc. Amer.

Math. Soc., 135:3837–3846, 2007.
[7] T. Lengyel. On the divisiblity by 2 of the Stirling numbers of the second kind. Fib. Quart.,

32:194–201, 1994.
[8] V. Moll. The evaluation of integrals: a personal story. Notices of the AMS, 49:311–317, 2002.
[9] M. Petkovsek, H. Wilf, and D. Zeilberger. A=B. A. K. Peters, Ltd., 1st edition, 1996.

[10] S. De Wannemacker. On the 2-adic orders of Stirling numbers of the second kind. INTEGERS,
5(1):A–21, 2005.

Department of Mathematics, Tulane University, New Orleans, LA 70118

E-mail address: tamdeberhan@math.tulane.edu

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Sco-

tia, canada, B3H 3J5

E-mail address: dmanna@mathstat.dal.ca

Department of Mathematics, Tulane University, New Orleans, LA 70118

E-mail address: vhm@math.tulane.edu


