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1. Introduction

The magnificent book Proofs and Confirmations by David Bressoud [3] tells the
story of the Alternating Sign Matrix Conjecture (ASM) and its proof. This remarkable
result involves the counting function

T (n) =

n−1
∏

j=0

(3j + 1)!

(n+ j)!
. (1.1)

The survey by Bressoud and Propp [4] describes the mathematics underlying this
problem.

The fact that these numbers are integers is a direct consequence of their appearance
as counting sequences. Mills, Robbins and Rumsey [11] conjectured that the number
of n× n matrices whose entries are −1, 0, or 1, whose row and column sums are all
1, and such that in every row, and in every column the non-zero entries alternate in
sign is given by T (n). The first proof of this ASM conjecture was provided by D.
Zeilberger [12]. This proof had the added feature of being pre-refereed. Its 76 pages
were subdivided by the author who provided a tree structure for the proof. An army
of volunteers provided checks for each node in the tree. The request for checkers can
be read in

http://www.math.rutgers.edu/∼zeilberg/asm/CHECKING

The question of integrality of quotients of factorials, such as T (n), has been con-
sidered by D. Cartwright and J. Kupka in [5].
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Theorem 1.1. Assume that for every integer k ≥ 2 we have
m
∑

i=1

⌊ai

k

⌋

≤
n
∑

j=1

⌊

bj
k

⌋

. (1.2)

Then the ratio of

n
∏

j=1

bj ! to

m
∏

i=1

aj ! is an integer.

The authors [5] use this result to prove that T (n) is an integer.

Given an interesting sequence of integers, it is a natural question to explore the
structure of their factorization into primes. This is measured by the p-adic valuation
of the elements of the sequence.

Definition 1.2. Given a prime p and a positive integer x 6= 0, write x = pmy, with y
not divisible by p. The exponent m is the p-adic valuation of x, denoted by m = νp(x).
This definition is extended to x = a/b ∈ Q via νp(x) = νp(a) − νp(b). We leave the
value νp(0) as undefined.

The p-adic valuations of many sequences have surprising properties. The reader
will find in [1] an analysis of the 2-adic valuation of the sequence

Al,m =
l!m!

2m−l

m
∑

k=l

2k

(

2m− 2k

m− k

)(

m+ k

m

)(

k

l

)

(1.3)

for fixed l ∈ N and m ≥ l. This example appeared in the evaluation of a definite
integral and some of its properties are given in [10]. The 2-adic properties of the
Stirling numbers of the second kind are described in [2].

In this paper we provide a complete description of the p-adic valuation of the
sequence T (n) in (1.1) for the primes p = 2 and 3. Figure 1 depicts the sequence
ν2 ◦ T (n) for 1 ≤ n ≤ 105 and Figure 2 gives ν3 ◦ T (n) for 1 ≤ n ≤ 312 = 531441.
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Figure 1. The 2-adic
valuation of T (n)
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Figure 2. The 3-adic
valuation of T (n)

The case p ≥ 5 presents similar features and the techniques presented here could
be used to describe the function νp ◦ T completely. This will be reported elsewhere.

As a corollary of the analysis presenetd here, we produce a new proof of a result
of D. Frey and J. Sellers [6]: the number T (n) is odd if and only if n is a Jacobsthal
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number Jm. These numbers, defined by the recurrence Jn = Jn−1 +2Jn−2 with initial
conditions J0 = 1 and J1 = 1, are reviewed in Section 3.

The main result of this paper is:

Theorem 1.3. Let Jn the Jacobsthal number and define In := [Jn, Jn+1]. The func-
tion ν2 ◦ T restricted to In is determined by its restriction to In−1 ∪ In−2. The details
are provided in the algorithm presented next.

Algorithm for the function ν2 ◦ T :

Step 1. Verify the special values ν2(T (2n)) = Jn−1 and ν2(T (Jn)) = 0. The midpoint
of the interval In = [ Jn, Jn+1 ] is 2n.

Step 2. Given N ∈ N, compute the unique index n such that Jn ≤ N < Jn+1.

Step 3. For 1 ≤ i ≤ Jn−1,

ν2(T (2n + i)) = ν2(T (2n − i)). (1.4)

Thus, if 2n < N < Jn+1, replace N by N∗ := 2n+1 − N that satisfies Jn < N∗ < 2n

and ν2(T (N)) = ν2(T (N∗)). Therefore, the value of ν2 ◦ T on the interval [Jn, Jn+1]
is determined by the values on its first half [Jn, 2

n].

Step 4. For 0 < i < 2Jn−3,

ν2(T (Jn + i)) = i+ ν2(T (Jn−2 + i)). (1.5)

This yields the value of ν2 ◦ T on the first part of the interval [ Jn, 2
n ], namely

[ Jn, Jn + 2Jn−3 ], in terms of those from In−2 = [ Jn−2, Jn−1 ].

Step 5. For 0 ≤ i ≤ Jn−2,

ν2(T (2n − Jn−2 + i)) = ν2(T (Jn−1 + i)) + 2Jn−3. (1.6)

This determines the values of ν2 ◦ T on the second part of the interval [ Jn, 2
n ],

namely [ Jn + 2Jn−3, 2n ], in terms of ν2 ◦ T restricted to the previous interval In−1 =
[ Jn−1, Jn−2 ].

The proof of this result is given in Section 4.

Theorem 1.4. For n ∈ N, let fn be the restriction of ν2◦T to the interval In scaled to
the unit square [0, 1]×[0, 1]. Then fn converges to the unique function f : [0, 1] → [0, 1]
that satisfies

f(x) =











2x+ 1
4
f(4x) if 0 ≤ x < 1

4
,

1
2

+ 1
2
f(2x− 1

2
) if 1

4
≤ x ≤ 3

4
,

2(1 − x) + 1
4
f(4x− 3) if 3

4
< x ≤ 1.

Similar results are valid for primes p ≥ 3. Some details are given in Section 5.
The generalization of T (n) defined by

Tp(n) :=

n−1
∏

j=0

(pj + 1)!

(n+ j)!
(1.7)
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is also considered. The numbers Tp(n) are integers and a recurrence for its p-adic
valuation is presented. A combinatorial interpretation of them is left as an open
question.

2. A recurrence

The integers T (n) defined in (1.1) grow rapidly and a direct calculation using (1.1)
is impractical. The number of digits of T (10k) is 12, 1136, 113622 and 11362189 for
1 ≤ k ≤ 4. Naturally, the prime factorization of T (n) can be computed in reasonable
time since every prime p dividing T (n) satisfies p ≤ 3n− 2.

In this section we discuss a recurrence for the p-adic valuation of T (n), that permits
its fast computation. Introduce the notation

fp(j) := νp(j!). (2.1)

Theorem 2.1. Let p be a prime. Then the p-adic valuation of T (n) satisfies

νp(T (n+ 1)) = νp(T (n)) + fp(3n+ 1) + fp(n) − fp(2n) − fp(2n+ 1). (2.2)

Proof. This follows directly by combining the initial value T (1) = 1 with the expres-
sion

νp(T (n)) =
n−1
∑

j=0

fp(3j + 1) −
n−1
∑

j=0

fp(n+ j) (2.3)

and the corresponding one for νp(T (n+ 1)). �

Legendre [9] established the formula

fp(j) = νp(j!) =
j − Sp(j)

p− 1
, (2.4)

where Sp(j) denotes the sum of the base-p digits of j. The result of Theorem 2.1 is
now expressed in terms of the function Sp.

Corollary 2.2. The p-adic valuation of T (n) is given by

νp(T (n)) =
1

p− 1

(

n−1
∑

j=0

Sp(n + j) −

n−1
∑

j=0

Sp(3j + 1)

)

. (2.5)

Summing the recurrence (2.2) and using T (1) = 1 we obtain an alternative expres-
sion for the p-adic valuation of T (n).

Proposition 2.3. The p-adic valuation of T (n) is given by

νp(T (n)) =
1

p− 1

n−1
∑

j=1

(Sp(2j) + Sp(2j + 1) − Sp(3j + 1) − Sp(j)) . (2.6)

In particular, for p = 2 we have

ν2(T (n)) =

n−1
∑

j=0

(S2(2j + 1) − S2(3j + 1)) (2.7)
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Corollary 2.4. For each n ∈ N we have
n−1
∑

j=1

S2(2j + 1) ≥

n−1
∑

j=1

S2(3j + 1). (2.8)

Note. The formula (2.6) can be used to compute T (n) for large values of n. Recall
that only primes p ≤ 3n − 2 appear in the factorization of T (n). For example, the
number T (100) has 1136 digits and its prime factorization is given by

T (100) = 223 · 319 · 1313 · 174 · 293 · 414 · 612 · 6711 · 715 · 733 · 151 · 1575 · 1639 · 16711

× 17315 · 17919 · 18121 · 19127 · 19329 · 19731 · 19933 · 21130 · 22326 · 22724 · 22924 · 23322

× 23920 · 24140 · 25116 · 25714 · 26312 · 26910 · 27110 · 2778 · 2816 · 2836 · 2932.

3. The Jacobsthal numbers

The Jacobsthal sequence (A001045) is defined by the recurrence

Jn = Jn−1 + 2Jn−2, with J0 = 1, J1 = 1. (3.1)

The first few values are 1, 1, 3, 5, 11, 21, 43, 85. These numbers have many interpre-
tations. Here is a small sample:

a) Jn is the numerator of the reduced fraction in the alternating sum

n+1
∑

j=1

(−1)j+1

2j
.

b) Number of permutations with no fixed points avoiding 231 and 132.

c) The number of odd coefficients in the expansion of (1 + x+ x2)2n−1
−1.

Many other examples can be found at

http://www.research.att.com/∼njas/sequences/A001045

The discussion of the function ν2 ◦ T employs several elementary properties of the
Jacobsthal number Jn, summarized here for the convenience of the reader.

Lemma 3.1. For n ≥ 2, the Jacobsthal numbers Jn satisfy

a) Jn = Jn−1 + 2Jn−2 with J0 = 1 and J1 = 1. (This is the definition of Jn).

b) Jn = 1
3
(2n+1 + (−1)n). Therefore Jn is the nearest integer to 2n+1

3
.

c) 2n−1 + 1 ≤ Jn < 2n.

d) Jn + Jn−1 = 2n.

e) Jn − Jn−2 = 2n−1.
5



4. The 2-adic valuation of T (n)

The goal of this section is to prove Theorem 1.3. The algorithm presented in Section
1 is justified. The analysis begins with an auxiliary lemma.

Lemma 4.1. Let n ∈ N. Introduce the notation S+
n,j := S2(3 · 2n + 3j − 2) and

S−

n,j := S2(3 · 2n − 3j + 1). Then

S+
n,j =











S2(3j − 2) + 2 if 1 ≤ j ≤ Jn−1,

S2(3j − 2) if 1 + Jn−1 ≤ j ≤ Jn,

S2(3j − 2) + 1 if 1 + Jn ≤ j ≤ 2n;

(4.1)

and

S−

n,j =











n + 1 − S2(3j − 2) if 1 ≤ j ≤ Jn−1,

n + 2 − S2(3j − 2) if 1 + Jn−1 ≤ j ≤ Jn,

n + 1 − S2(3j − 2) if 1 + Jn ≤ j ≤ 2n.

(4.2)

Proof. Let 3j − 2 = a0 + 2a1 + · · · + ar2
r be the binary expansion of 3j − 2. The

corresponding one for 3 · 2n−1 is simply 2n−1 + 2n. For 3j − 2 < 2n−1 these two
expansions have no terms in common, therefore S+

n,j = S2(3j − 2) + 2. On the other

hand, if 2n−1 ≤ 3j − 2 < 2n then the index in the binary expansion of 3j − 2 is
r = n− 1 with an−1 = 1. The expansion of 3j − 2 + 3 · 2n−1 is now

a0 + 2a1 + · · · + an−22
n−2 + 2n−1 + 2n−1 + 2n = a0 + 2a1 + · · · + an−22

n−2 + 2n+1,

and this yields S+
n,j = a0 + a1 + · · ·+ an−2 + 1 = S2(3j − 2). The remaining cases are

treated in a similar form. �

We now establish the 2-adic valuation at the center of the interval [Jn−1, Jn]. This
establishes one of the special values in Step 1 of the algorithm.

Theorem 4.2. Let n ∈ N. Then

ν2 (T (2n)) = Jn−1. (4.3)

Proof. We proceed by induction and split

ν2 (T (2n)) =
2n

−1
∑

j=1

[S2(2j + 1) − S2(3j + 1)] (4.4)

at j = 2n−1 − 1. The first part is identified as ν2 (T (2n−1)) to produce

ν2 (T (2n)) = ν2

(

T (2n−1)
)

+

2n−1
−1

∑

j=0

S2(2j + 1 + 2n) −

2n−1

∑

j=1

S2(3j − 2 + 3 · 2n−1).
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From 2j + 1 ≤ 2n − 1 < 2n it follows S2(2j + 1 + 2n) = S2(2j + 1) + 1. Assume first
that n is even. Lemma 4.1 gives

2n−1

∑

j=1

S2(3j − 2 + 3 · 2n−1) =

(2n−1+1)/3
∑

j=1

[S2(3j − 2) + 2]+

(2n
−1)/3
∑

j=(2n−1+1)/3

S2(3j − 2) +

2n−1

∑

j=(2n+2)/3

[S2(3j − 2) + 1]

and using (2.7) yields

ν2(T (2n)) = 2ν2(T (2n−1)) − 1 = 2Jn−2 − 1. (4.5)

Elementary properties of Jacobsthal numbers give 2Jn−2 − 1 = Jn−1, proving the
result. The argument for n odd is similar. �

The next theorem gives the second special value in Step 1.

Theorem 4.3. Let n ∈ N. Then ν2(T (Jn)) = 0.

Proof. Proposition 2.3 gives

ν2 (T (Jn)) =

Jn−1
∑

j=1

[S2(2j + 1) − S2(3j + 1)] . (4.6)

Split the sum at 2n−1 ≤ Jn − 1 to obtain

ν2 (T (Jn)) =

2n−1
−1

∑

j=1

[S2(2j + 1) − S2(3j + 1)]

+

Jn−1
∑

j=2n−1

[S2(2j + 1) − S2(3j + 1)]

= ν2

(

T (2n−1)
)

+
Jn−1
∑

j=2n−1

[S2(2j + 1) − S2(3j + 1)] .

Therefore

ν2 (T (Jn)) = ν2(T (2n−1)) +
Jn−1−2n−1

∑

j=0

[

S2(2j + 1 + 2n) − S2(3j + 1 + 3 · 2n−1)
]

.

The Jacobsthal numbers satisfy Jn − 1 − 2n−1 = Jn−2 − 1, so that

ν2 (T (Jn)) = ν2(T (2n−1)) +

Jn−2−1
∑

j=0

[

S2(2j + 1 + 2n) − S2(3j + 1 + 3 · 2n−1)
]

.
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The relation

2j + 1 ≤ 2(Jn−2 − 1) + 1 = 2Jn−2 − 1 = Jn − Jn−1 − 1 < 2n,

implies
S2(2j + 1 + 2n) = S2(2j + 1) + 1.

Similarly 3j+1 ≤ 3Jn−2−2 < 3(2n−1 +(−1)n)−2 ≤ 2n−1−1 and 3 ·2n−1 = 2n +2n−1

give
S2(3j + 1 + 3 · 2n−1) = S2(3j + 1) + 2,

for 0 ≤ j ≤ Jn−2 − 1. Therefore

ν2 (T (Jn)) = ν2

(

T (2n−1)
)

+

Jn−2−1
∑

j=0

[S2(2j + 1) − S2(3j + 1)] − Jn−2.

Theorem 4.2 shows that the first and third term on the line above cancel, leading to

ν2 (T (Jn)) = ν2 (T (Jn−2)) .

The result now follows by induction on n. �

We continue with the analysis of the function ν2 ◦T . The next Lemma corresponds
to Step 3 in the outline that deals with ν2(T (j)) for Jn ≤ j ≤ Jn +2Jn−3 = 2n−Jn−2.

Lemma 4.4. For 0 < i ≤ 2Jn−3 we have

ν2(T (Jn + i)) = i+ ν2(T (Jn−2 + i)). (4.7)

Proof. Assume n is even. Then

ν2(T (Jn + i)) =
Jn+i−1
∑

j=1

[S2(2j + 1) − S2(3j + 1)]

=

Jn−1
∑

j=1

[S2(2j + 1) − S2(3j + 1)] +

Jn+i−1
∑

j=Jn

[S2(2j + 1) − S2(3j + 1)] .

The first sum is ν2(T (Jn)) = 0, according to Theorem 4.3. Lemma 3.1 now gives

ν2(T (Jn + i)) =

Jn+i−1
∑

j=Jn

[S2(2j + 1) − S2(3j + 1)]

=
Jn+i
∑

j=Jn+1

[S2(2j − 1) − S2(3j − 2)]

=

Jn+i−2n−1

∑

j=Jn+1−2n−1

[

S2(2
n + 2j − 1) − S2(3 · 2n−1 + 3j − 2)

]

=

Jn−2+i
∑

j=Jn−2+1

[

S2(2
n + 2j − 1) − S2(3 · 2n−1 + 3j − 2)

]

.
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The index j satisfies

2j − 1 ≤ 2(Jn−2 + i) − 1 < 2(Jn−2 + 2Jn−3) = 2Jn−1 < 2n,

therefore S2(2
n + 2j − 1) = 1 + S2(2j − 1). The lower limit in the last sum is

Jn−2 + 1 = 1
3
(2n−1 + 1) + 1, and the upper bound is

Jn−2 + i ≤ Jn−2 + 2Jn−3 = Jn−1 =
1

3
(2n − 1). (4.8)

For these values of j, Lemma 4.1 gives S2(3 · 2
n−1 + 3j − 2) = S2(3j − 2). Therefore

ν2(T (Jn + i)) =

Jn−2+i
∑

j=Jn−2+1

[S2(2j − 1) + 1 − S2(3j − 2)]

= i+

Jn−2+i
∑

j=Jn−2+1

[S2(2j − 1) − S2(3j − 2)]

= i+ ν2(T (Jn−2 + i)).

The result has been established for n even. The proof for n odd is similar. �

Corollary 4.5. The 2-adic valuation of T (n) satisfies ν2(T (j)) > 0 for Jn < j <
2n − Jn−2.

The next result shows the graph of ν2 ◦ T on the interval [2n − Jn−2, 2
n + Jn−2] is

a vertical shift of the graph on [Jn−1, Jn]. This corresponds to Step 4 in the outline.

Proposition 4.6. For 0 ≤ i ≤ 2Jn−2,

ν2(T (2n − Jn−2 + i)) = ν2(T (Jn−1 + i)) + 2Jn−3. (4.9)

Proof. The functions ν2(T (Jn−1 + i)) and ν2(T (2n −Jn−2 + i)) have the same discrete
derivative. This amounts to

ν2(T (Jn−1 + i)) − ν2(T (Jn−1 + i− 1)) =

ν2(T (2n − Jn−2 + i)) − ν2(T (2n − Jn−2 + i− 1)) (4.10)

for 1 ≤ i ≤ 2Jn−2. Observe that

ν2(T (k)) − ν2(T (k − 1)) = S2(2k − 1) − S2(3k − 2), (4.11)

and using 2n − Jn−2 = 2n−1 + Jn−1, conclude that the result is equivalent to the
identity

S2(2
n + 2(Jn−1 + i) − 1) − S2(2(Jn−1 + i) − 1) =

S2(3 · 2
n−1 + 3(Jn−1 + i) − 2) − S2(3(Jn−1 + i) − 2), (4.12)

for 1 ≤ i ≤ 2Jn−2. Define

hn(i) =

{

1 if 1 ≤ i ≤ Jn−2;

0 if Jn−2 + 1 ≤ i ≤ 2Jn−2.
(4.13)

9



The assertion is that both sides in (4.12) agree with hn(i). The analysis of the left
hand side is easy: the condition 1 ≤ i ≤ Jn−2 implies 2(Jn−1 + i)− 1 ≤ 2n − 1. Thus,
the term 2n does not interact with the binary expansion 2(Jn−1 + i)−1 and produces
the extra 1. On the other hand, if Jn−2 + 1 ≤ i ≤ 2Jn−2, then

2n + 1 = 2(Jn−1 + Jn−2 + 1) − 1 ≤ 2(Jn−1 + i) − 1

≤ 2(Jn−1 + 2Jn−2) − 1 = 2Jn − 1 < 2n+1 − 1. (4.14)

Therefore the binary expansion of x := 2(Jn−1 + i) − 1 is of the form a0 + a1 · 2 +
· · ·+ an−1 · 2

n−1 + 1 · 2n. It follows that 2n + x and x have the same number of 1’s in
their binary expansion. Thus S2(x) = S2(x+ 2n) as claimed.

The analysis of the right hand side of (4.12) is slightly more difficult. Let x :=
3(Jn−1 + i)− 2 and it is required to compare S2(x) and S2(3 · 2

n−1 +x). Observe that

x ≤ 3(Jn−1 + 2Jn−2) − 2 = 3Jn − 2 = 2n+1 + (−1)n − 2 < 2n+1 (4.15)

and
x ≥ 3(Jn−1 + 1) − 2 = 2n + (−1)n−1 + 1 ≥ 2n. (4.16)

This shows that the binary expansion of x is of the form

x = a0 + a1 · 2 + · + an−1 · 2
n−1 + 1 · 2n, (4.17)

and the corresponding one for 3 · 2n−1 is 2n + 2n−1. An elementary calculation shows
that S2(x+ 3 · 2n−1)− S2(x) is 1 if an−1 = 0 and 0 if an−1 = 1. In order to transform
this inequality to a restriction on the index i, observe that an−1 = 1 is equivalent to
x− 2n ≥ 2n−1. Using the value of x this becomes 3(Jn−1 + i) − 2) ≥ 3 · 2n−1, that is
directly transformed to i ≥ Jn−2 + 1. This shows that the right hand side of (4.12)
also agrees with hn and (4.12) has been established. �

The final step in the proof of Theorem 1.3 deals with the symmetry of the graph
of ν2(T (j)) on In about the point j = 2n. The range covered in the next proposition
is 2n − Jn−1 ≤ j ≤ 2n + Jn−1.

Proposition 4.7. For 1 ≤ i ≤ Jn−1,

ν2(T (2n − i)) = ν2(T (2n + i)). (4.18)

Proof. Start with

ν2(T (2n)) − ν2(T (2n − i)) =

2n

∑

j=2n
−i+1

[S2(2j − 1) − S2(3j − 2)]

=

i
∑

k=1

[

S2(2
n+1 − (2k − 1)) − S2(3 · 2n − (3k − 1))

]

.

The first term in the sum satisfies

S2(2
n+1 − (2k − 1)) = n + 2 − S2(2k − 1). (4.19)
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To check this, write 2k − 1 = a0 + a1 · 2 + · · ·+ ar · 2
r with a0 = 1 because 2k − 1 is

odd. Now, 2n+1 = (1 + 2 + 22 + · · ·+ 2n) + 1 implies that

2n+1 − (2k − 1) = (2n + 2n−1 + · · · + 2r+1)

+(1 − ar) · 2
r + (1 − ar+1) · 2

r−1 + · · · + (1 − a1) · 2 + 1

resulting in

S2(2
n+1 − (2k − 1)) = n + 1 − (ar + ar−1 + · · · + a1)

= n + 2 − S2(2k − 1).

Therefore

ν2(T (2n)) − ν2(T (2n − i)) = (n+ 2)i−

i
∑

k=1

S2(2k − 1)−

i
∑

k=1

S2(3 · 2n − (3k − 1)). (4.20)

Similarly

ν2(T (2n + i)) − ν2(T (2n)) =
2n+i
∑

j=2n+1

(S2(2j − 1) − S2(3j − 2))

=

i
∑

k=1

(

S2(2
n+1 + 2k − 1) − S2(3 · 2n + 3k − 2)

)

.

The inequality

2k − 1 ≤ 2i− 1 ≤ 2Jn−1 − 1 ≤ 2 · 2n−1 − 1 ≤ 2n − 1 < 2n+1 (4.21)

shows that S2(2
n+1 + 2k − 1) = 1 + S2(2k − 1). Also, Lemma 4.1 yields the identity

S2(3 · 2n + 3k − 2) + S2(3 · 2n − 3k + 1) = n+ 3. (4.22)

Therefore

ν2(T (2n + i)) − ν2(T (2n)) =
i
∑

k=1

(

S2(2
n+1 + 2k − 1) − S2(3 · 2n + 3k − 2)

)

+ i

+

i
∑

k=1

S2(2k − 1) − (n + 3 − S2(3 · 2
n − 3k + 1)) .

Thus

ν2(T (2n)) − ν2(T (2n − i)) = − [ν2(T (2n − i)) − ν2(T (2n))] ,

and symmetry has been established. �
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Note. The identity (4.22) can be given a direct proof by induction on k. It is required
to check that the left hand side is independent of k. This follows from the identity

S2(m+ 3) − S2(m) =

{

2 − ω2

(

m
2

)

if m ≡ 0 mod 2,

−ω2

(

⌊m
4
⌋
)

if m ≡ 1 mod 2,
(4.23)

where ω2(m) is the number of trailing 1’s in the binary expansion of m. For m =
829, S3(829) = 7 and S3(832) = 3. The binary expansion of m = 207 = ⌊829/4⌋ is
11001111 and the number of trailing 1’s is 4. This observation is due to A. Straub.

Note. The proof of Theorem 1.3 is now complete.

Example. The use of the algorithm is illustrated with the computation of ν2(T (5192)).
The number T (5192) has 3, 062, 890 digits and it is never computed.

1. Start with J12 = 2731 < 5192 < J13 = 5461. The midpoint of [2731, 5461] is 4096.

2. Apply Step 3, to obtain ν2(T (5192)) = ν2(T (3000)).

3. The number 3000 ∈ [J12, J12 + 2J9]. Step 4 gives ν2(T (3000)) = 269 + ν2(T (952)).

4. The number 952 ∈ [J10 + 2J7, 2
10]. Step 5 gives ν2(T (952)) = 170 + ν2(T (440)).

5. The number 440 ∈ [J9 + 2J6, 2
9]. Step 5 gives ν2(T (440)) = 86 + ν2(T (184)).

6. The number 184 ∈ [J8, J8 + 2J5]. Step 4 gives ν2(T (184)) = 13 + ν2(T (56)).

7. The number 56 ∈ [J6 + 2J3, 2
6]. Step 5 gives ν2(T (56)) = 10 + ν2(T (24)).

8. The number 24 ∈ [J5, J5 + 2J2]. Step 4 gives ν2(T (24)) = 3 + ν2(T (8)).

9. The number 8 is a power of 2, so ν2(T (8)) = J2 = 3.

Backwards substitution gives ν2(T (5192)) = 554. This can be verified using 2.7.

The construction of ν2 ◦ T given in the algorithm following Theorem 1.3 gives the
result of Frey and Sellers [6].

Corollary 4.8. The number T (n) is odd if and only if n is a Jacobstahl number.

The next statement deals with the range of ν ◦ T .

Theorem 4.9. The range of ν2 ◦ T is N. Furthermore, for each m ∈ N, the equation
ν2(T (n)) = m has finitely many solutions, the largest being n = J2m+1 − 1.

Proof. The inequality

ν2(T (Jn + i)) > ν2(T (Jn + 1)) = ν2(T (Jn+1 − 1)),
12



for 1 < i < Jn+1 − Jn − 2 and ν2(T (Jn+2 − 1)) = ν2(T (Jn − 1)) + 1, comes from the
previous discussion. Therefore the minimum value of ν2(T (n)) around 2n is attained
exactly at Jn +1 and Jn+1−1. These values are also strictly increasing along the even
and odd indices. Thus, m < ν2(T (i)) for any given m, provided i is large enough.

To determine the last appearance of m, it is only required to determine the last
occurance of n such that ν2(T (Jn−1)) = m. Since ν2(T (J2−1)) = ν2(T (J3−1)) = 1,
it follows that ν2(T (J2n − 1)) = ν2(T (J2n+1 − 1)) = n. �

Note. Define λ(m) to be the number of solutions of ν2(T (n)) = m. The values for
1 ≤ m ≤ 8 are shown below.

m 1 2 3 4 5 6 7 8
λ(m) 2 8 5 12 5 14 8 14

Table 1. The first 8 values in the range of ν2 ◦ T

For example, the five solutions to ν(T (n)) = 5 are 16, 342, 682, 684 and J11−1 = 1364
and the eight solutions to ν(T (n)) = 7 are 26, 38, 46, 82, 5462,
10922, 10924 and J15 − 1 = 21844.

Note. In sharp contrast to the 2-adic valuation, D. Frey and J. Sellers [7, 8] show
that if p ≥ 3 is a prime, the equation νp(T (n))) = m has infinitely many solutions,
for each m ∈ N.

Scaling. The graph of ν2◦T on the interval In := [ Jn, Jn+1 ] vanishes at the endpoints
and it is symmetric about the midpoint 2n where the maximum value Jn−1 occurs.
Figure 3 shows ν2(T (n)) on the interval I10 = [341, 683] and Figure 4 depicts the first
15 such graphs, scaled to the unit square.

350 400 450 500 550 600 650

50

100

150

Figure 3. The 2-adic
valuation of T (n) be-
tween minima

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The scaled
version of the 2-adic val-
uation of T (n)
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The interval [Jn, 2
n] ⊂ In is divided into [Jn, Jn + 2Jn−3] and [Jn + 2Jn−3, 2

n].
Scaling In to [0, 1] the shifted endpoints of these subintervals are

{

0,
2Jn−3

Jn+1 − Jn
,

2n − Jn

Jn+1 − Jn

}

→

{

0,
1

4
,
1

2

}

, (4.24)

as n→ ∞.

The linear interpolation of the function ν2 ◦T on the interval In = [Jn, Jn+1] is now
scaled to the unit square by

fn(x) =
1

Jn−1
(ν2 ◦ T ) (Jn + (Jn+1 − Jn)x) . (4.25)

The algorithm in Section 1 is now translated into a relation for the functions fn.

Proposition 4.10. The function fn satisfies

fn(x) =
Jn+1 − Jn

Jn−1

x+
Jn−3

Jn−1

fn−2

(

Jn+1 − Jn

Jn−1 − Jn−2

x

)

,

for 0 ≤ x ≤ 2Jn−3

Jn+1−Jn

and

fn(x) =
Jn−2

Jn−1

fn−1

(

Jn+1 − Jn

Jn − Jn−1

x−
2Jn−3

Jn − Jn−1

)

+
2Jn−3

Jn−1

,

for 2Jn−3

Jn+1−Jn

≤ x ≤ Jn−1

Jn+1−Jn

.

A contraction mapping argument shows that fn converges to the unique function
f : [0, 1] → [0, 1] that satisfies

f(x) =











2x+ 1
4
f(4x) if 0 ≤ x < 1

4
,

1
2

+ 1
2
f(2x− 1

2
) if 1

4
≤ x ≤ 3

4
,

2(1 − x) + 1
4
f(4x− 3) if 3

4
< x ≤ 1.

This is the function obtained from Figure 1 as the number of points becomes infinite.
The details are ommited.

5. The 3-adic valuation of T (n)

The analysis of the 2-adic valuation of T (n) presented in Section 4 is now extended
to the prime p = 3. A complete analytic description of Figure 2 is possible. Only the
results are given since the arguments are similar to those for p = 2.

The 3-adic expansion of n ∈ N is

n = aj · 3
j + aj−1 · 3

j−1 + · · ·+ a1 · 3 + a0 (5.1)

is used to define
S3(n) := a0 + a1 + · · ·+ ak. (5.2)

The analog of Theorem 1.3 is stated first.

Theorem 5.1. The function ν3 ◦ T restricted to the interval Kn := [3n, 3n+1] is
determined by its restriction to Kn−1.
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A characterization of the values n for which ν3(T (n)) = 0 is given next.

Theorem 5.2. Let n ∈ N with (5.1) as its expansion in base 3. Then ν3(T (n)) = 0
if and only if there is an index 0 ≤ i ≤ k such that a0 = a1 = · · · = ai−1 = 0 and
ai+1 = ai+2 = · · · = ak = 0 or 2, with ai arbitrary.

Proposition 2.3 is now written as

ν3(T (n)) = 1
2

n−1
∑

j=1

µ3(j), (5.3)

using the function

µ3(j) := S3(2j) + S3(2j + 1) − S3(3j + 1) − S3(j). (5.4)

Theorem 5.3. The 3-adic valuation of T (n) satisfies

a) ν3(T (3n)) = 3ν3(T (n)).

b) ν3(T (a)) = ν3(T (2 · 3n + a)) for 0 ≤ a ≤ 3n and

µ3(3
n + i) =







µ3(i) + 2 if 1 ≤ i < 1
2
3n,

µ3(i) if i = 1
2
(3n + 1),

µ3(i) − 2 if 1
2
3n + 1 < i ≤ 3n,

for 1 ≤ i < 3n.

c) µ3(3
n + i) = −µ3(2 · 3

n − i+ 1) for 1 ≤ i < 3n

2
.

The rest of this section contains a procedure to compute ν3(T (n)). Consider the
ternary expansion (5.1) and define a sequence of integers {xj, xj−1, · · · , x1, x0} ac-
cording to the following rules:

a) the initial term is xj = n.

b) for 1 ≤ i ≤ j, write xi in base 3 with i+ 1 digits (a certain number of zeros might
have to be placed at the beginning) and let di be the first digit in this expansion;

c) let ti be the integer obtained by dropping the first digit of the expansion of xi in
part b). Then, for 1 ≤ i ≤ j,

xi−1 =

{

ti if di = 0 or 2,

Min (ti, 3
i − ti) if di = 1.

(5.5)

Theorem 5.4. The sequence defined above satisfies

ν3 (T (xi)) =

{

ν3 (T (xi+1)) if di = 0 or 2

ν3 (T (xi+1)) − xi if di = 1.

Moreover

ν3 (T (n)) =
∑

di+1=1

xi. (5.6)
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Observe that the number of 3-adic digits is decreased by 1 in the passage from xi

to xi−1. Therefore 0 ≤ x1 ≤ 2 and the procedure terminates in a finite number of
steps.

Example A symbolic computation shows that ν3(T (1280)) = 180. This is now con-
firmed using Theorem 5.4. The 3-adic expansion of n = 1280 is [1 2, 0, 2, 1, 0, 2]3.
Therefore j = 6 and x6 = 1280. The first digit is d6 = 1. Dropping it yields
t6 = [2, 0, 2, 1, 0, 2]3 = 551 and x5 = Min(551, 36 − 551) = 178. The 3-adic expan-
sion of x5 is written as x5 = [0 2, 0, 1, 2, 1]3. The extra zero in front is added to
have 6 digits in this expansion. This is the first step of the algorithm. The complete
sequence is gioven in table 2.

i 6 5 4 3 2 1 0
di 1 0 2 0 1 0 0
xi 1280 178 178 16 16 2 2

Table 2. The algorithm for ν3 ◦ T for n = 1280

The terms contributing to ν3(T (n)) are those with di+1 = 1, namely i = 5 and
i = 1. This gives x5 + x1 = 178 + 2 = 180.

Example. The value ν3(T (1000)) is computed from the table below. It yields
ν3(T (1000)) = x5 + x4 + x2 = 271 + 28 + 1 = 300.

i 6 5 4 3 2 1 0
di 1 1 0 1 0 0 0
xi 1000 271 28 28 1 1 1

Table 3. The algorithm for ν3 ◦ T for n = 1000

Theorem 5.4 yields a scaling procedure similar to the one given for p = 2 in Section
4. The resulting limiting function satisfies

f(x) =



















1
3
f(3x) if 0 ≤ x ≤ 1

3
,

4(x− 1
3
) + 1

3
f(3x− 1) if 1

3
≤ x ≤ 1

2
,

−4(x− 2
3
) + 1

3
f(3x− 1) if 1

2
≤ x ≤ 2

3
,

1
3
f(3x− 2) if 2

3
≤ x ≤ 1.

The graph of f corresponds to the limiting behavior of Figure 2.

Note. A similar phenomena is observed for larger primes. The figures show the
valuations of T (n) for p = 5 and p = 7 in the range 1 ≤ n ≤ 2000.
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Figure 6. The 7-adic
valuation of T (n)

6. A generalization

The sequence

Tp(n) :=
n−1
∏

j=0

(pj + 1)!

(n + j)!
, (6.1)

contains T (n) of (1.1) as the special case for p = 3. In this section we present some
elementary properties of this generalization.

Theorem 6.1. For a fixed prime p ≥ 3, the numbers Tp(n) are integers.

Proof. Start with

Tp(n+ 1) = Tp(n) × yp(n), (6.2)

where

yp(n) =
(pn+ 1)!n!

(2n+ 1)! (2n)!
. (6.3)

Define

xp(n) :=
(pn+ 1)!

((p− 1)n+ 1)!n!
=

(

pn + 1

n

)

, (6.4)

and observe that

yp(n) = xp(n) × yp−1(n)n!. (6.5)

Iterating this argument yields

yp(n) =

k−1
∏

r=0

xp−r(n)yp−k(n). (6.6)

The choice k = p− 4 yields

yp(n) =

(

4n+ 1

2n

)

n!p−3

p−5
∏

r=0

(

(p− r)n+ 1

n

)

.
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The upshot is that yp(n) is an integer. The recurrence (6.2) and the initial condition
Tp(1) = 1 now show that Tp(n) is also an integer. The explicit formula

Tp(n) =
n−1
∏

j=1

(

4j + 1

2j

)

j!p−3

p−5
∏

r=0

(

(p− r)j + 1

j

)

(6.7)

follows from the recurrence.
�

Proof. An alternative proof of the fact that yp(n) is an integer was shown to us by
Valerio de Angelis. Observe that, for p ≥ 4, we have (pn + 1)! = N × (4n + 1)! for
the integer N = (4n+ 2)(p−4)n. Therefore

yp(n) = (4n+ 2)(p−4)n ×

(

4n+ 2

2n

)

n!, (6.8)

shows that yp(n) ∈ N and yields the explicit formula

Tp(n) =
n−1
∏

j=1

(4j + 2)(p−4)n

(

4j + 1

2j

)

j!. (6.9)

�

Proof. A third proof using Theorem 1.1 was shown to us by T. Amdeberhan. The
required inequality states: if n, k, p ∈ N and p ≥ 3, then

ψk(n; p) :=
n−1
∑

j=0

⌊

pj + 1

k

⌋

−
n−1
∑

j=0

⌊

n + j

k

⌋

≥ 0.

It suffices to prove the special case p = 3, i.e. ψk(n; 3) ≥ 0 which we denote by ψk(n)
for k ≥ 3, n ≥ 1. Write n = ck + r where 0 ≤ r ≤ k − 1. We approach a reduction

process by breaking down the respective sums as follows.

n−1
∑

j=0

⌊

3j + 1

k

⌋

=

ck−1
∑

j=0

⌊

3j + 1

k

⌋

+

r−1
∑

j=0

⌊

3(ck + j) + 1

k

⌋

=

ck−1
∑

j=0

⌊

3j + 1

k

⌋

+ 3cr +

r−1
∑

j=0

⌊

3j + 1

k

⌋

,
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and
n−1
∑

j=0

⌊

n + j

k

⌋

=
ck−1
∑

j=0

⌊

ck + r + j

k

⌋

+ 2cr +
r−1
∑

j=0

⌊

r + j

k

⌋

=
ck−1
∑

j=0

⌊

ck + j

k

⌋

−
r−1
∑

j=0

⌊

ck + j

k

⌋

+
r−1
∑

j=0

⌊

2ck + j

k

⌋

+ 2cr +
r−1
∑

j=0

⌊

r + j

k

⌋

=
ck−1
∑

j=0

⌊

ck + j

k

⌋

+
r−1
∑

j=0

⌊

ck + j

k

⌋

+ 2cr +
r−1
∑

j=0

⌊

r + j

k

⌋

=

ck−1
∑

j=0

⌊

ck + j

k

⌋

+ cr +

r−1
∑

j=0

⌊

j

k

⌋

+ 2cr +

r−1
∑

j=0

⌊

r + j

k

⌋

=

ck−1
∑

j=0

⌊

ck + j

k

⌋

+ 3cr +

r−1
∑

j=0

⌊

r + j

k

⌋

.

Combining these expressions, we find that ψk(ck + r) = ψk(ck) + ψk(r). A similar
argument with r replaced by k produces ψk(ck + k) = ψk(ck) + ψk(k). We conclude
ψk is k-Euclidean, i.e.

ψk(ck + r) = cψk(k) + ψk(r).

Therefore, we just need to verify the assertion ψk(r) ≥ 0. In fact, we will strengthen
it by giving an explicit formula in vectorial form

[ψk(0), . . . , ψk(k − 1)] = [0, 0k′

, 1, 2, . . . , ⌊k′′/2⌋, ⌈k′′/2⌉, . . . , 2, 1, 0k′

];

where k′ = ⌊k+1
3
⌋, k′′ = k − 1 − 2k′ and 0k′

means k′ consecutive zeros. This admits
an elementary proof. Note that ψk(ck) = 0, hence ψk is k-periodic and it satisfies
ψk(ck + r) = ψk(r). �

We now present a recurrence for the p-adic valuation of the sequence Tp(n). The
special role of the prime p = 3 becomes apparent.

Theorem 6.2. Let p be prime. Then the sequence Tp(n) satisfies

νp(Tp(pn)) = pνp(Tp(n)) +
1

2
p(p− 3)n2. (6.10)

Proof. Start with

Tp(pn) =

pn−1
∏

j=0

(pj + 1)!/

2pn−1
∏

j=pn

j! (6.11)

and using Legendre’s formula to obtain

(p− 1)νp(Tp(pn)) =

pn−1
∑

j=0

pj + 1 − Sp(pj + 1) −

2pn−1
∑

j=pn

j − Sp(j). (6.12)
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The terms independent of the function Sp add up to n2p(p− 3)/2 so that

νp(Tp(pn)) − pνp(Tp(n)) =
1

2
n2p(p− 3) +

1

p− 1
Wp,n, (6.13)

where

Wp,n = −

pn−1
∑

j=0

Sp(pj + 1) +

2pn−1
∑

j=pn

Sp(j) + p
n−1
∑

j=0

Sp(pj + 1) − p
n−1
∑

j=0

Sp(n + j). (6.14)

Theresult follows from Wp,n = 0. To establish this use Sp(pj+1) = 1+Sp(j) to write

Wp,n = −

pn−1
∑

j=0

Sp(j) +

2pn−1
∑

j=pn

Sp(j) + p

n−1
∑

j=0

Sp(j) − p

2n−1
∑

j=n

Sp(j). (6.15)

In the second sum, write j = pr+k with 0 ≤ k ≤ p−1 and n ≤ r ≤ 2n−1, to obtain

2pn−1
∑

j=pn

Sp(j) =

p−1
∑

k=0

2n−1
∑

r=n

Sp(pr + k)

=

2n−1
∑

r=n

p−1
∑

k=0

(k + Sp(r))

=
n

2
p(p− 1) + p

2n−1
∑

r=n

Sp(r).

This form of the second term is now combined with the fourth one in (6.15). A similar
calculation on the first term gives the result. Indeed,

pn−1
∑

j=0

Sp(j) =

p−1
∑

k=0

n−1
∑

r=0

Sp(pr + k)

=

p−1
∑

k=0

n−1
∑

r=0

(k + Sp(r))

=
n

2
p(p− 1) + p

n−1
∑

r=0

Sp(r).

�

Corollary 6.3. For p a prime, we have

νp(Tp(p
n)) =

pn(p− 3)(pn − 1)

2(p− 1)
. (6.16)

Proof. Replace n by pn in the Theorem to obtain

νp(Tp(p
n+1)) = pνp(Tp(p

n)) +
1

2
(p− 3)p2n+1. (6.17)

Iterating this identity yields the result. �
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Problem. The sequence Tp(n) comes as a formal generalization of the original se-
quence T3(n) that appeared in counting alternating symmetric matrices. This raises
the question: what do Tp(n) count?
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