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Abstract

The sequence {xn} defined by xn = (n + xn−1)/(1 − nxn−1), with x1 = 1, appeared in the context of
some arctangent sums. We establish the fact that xn �= 0 for n � 4 and conjecture that xn is not an integer
for n � 5. This conjecture is given a combinatorial interpretation in terms of Stirling numbers via the ele-
mentary symmetric functions. The problem features linkage with a well-known conjecture on the existence
of infinitely many primes of the form n2 + 1, as well as our conjecture that (1 + 12)(1 + 22) · · · (1 + n2) is
not a square for n > 3. We present an algorithm that verifies the latter for n � 103200.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The evaluation of arctangent sums of the form

∞∑
k=1

tan−1 h(k) (1.1)
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for a rational function h, appears in the literature from time to time. Throughout the paper
tan−1(·) is defined by its principal branch. In joint work with G. Boros, the third author presented
in [3] a systematic study of these sums. There, the reader will find the elementary evaluation

∞∑
k=1

tan−1 2

k2
= 3π

4
, (1.2)

as well as the more advanced

∞∑
k=1

2−k tan−1
(

sinh 2kx

sin 2kx

)
= tan−1

(
tanhx

tanx

)
. (1.3)

As part of this study, the authors of [3] considered the sequence

xn := tan
n∑

k=1

tan−1 k, n � 1. (1.4)

The addition formula for tanx yields the Ricatti-type equation

xn = xn−1 + n

1 − nxn−1
, (1.5)

with the initial condition x1 = 1. We prove that 1 − nxn−1 �= 0 for n > 1, so that xn is well
defined. Naturally, xn ∈ Q and the first few values are

{
1, −3, 0, 4, − 9

19
,

105

73
, −308

331
,

36

43

}
. (1.6)

Moreover, running (1.5) backwards, we find that x0 = 0. In this paper we settle the conjecture
proposed in [3] to the effect that xn �= 0 for n � 4. This proof is based on the analysis of the
2-adic valuation of xn.

Definition 1.1. Given a prime p and an integer x �= 0, write x = pmy, with y not divisible by p.
The exponent m is the p-adic valuation of x, denoted by m = νp(x). This definition is extended
to x = a/b ∈ Q via νp(x) = νp(a) − νp(b). We leave the value νp(0) as undefined.

In Section 2 we provide an explicit expression for ν2(xn). This is used to prove that xn �= 0
for n �= 4. The study of arithmetical properties of the sequence {xn} lead us to propose:

Conjecture 1.2. For n � 5, the value xn is not an integer.

During the process of developing tables of values for ln�(x + iy), J. Todd [18] declared a
positive integer m to be reducible if there is an identity of the form

tan−1 m =
∑

fr tan−1 nr, (1.7)
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for some integers fr, nr . For example, 13 is reducible since

tan−1 13 = 5 tan−1 1 − tan−1 2 − tan−1 4. (1.8)

The reducibility of m was characterized in terms of arithmetical properties of m.

Theorem 1.3. Let m ∈ N. Then m is reducible if and only if all prime factors of 1 + m2 occur
among the prime factors of 1 + k2 for 1 � k � m − 1.

Theorem 1.4. Let m ∈ N. Then m is reducible if and only if the largest prime factor of 1 + m2 is
less than 2m.

The question of whether xn in (1.5) is an integer m corresponds to asking for a reduction of m

of a specific type: all fr must be +1 and the integers nr must be in the segment {1,2, . . . , n}.
Some partial results for the resolution of Conjecture 1.2 are given in Section 4. We prove that

the sequence {xn: n � 5} does not contain two consecutive elements which are integers. In this
section we also explore arithmetical conditions on the element xn−1, written in irreducible form
as u/v, in order to obtain xn ∈ Z. Proposition 4.3 shows that xn ∈ Z is equivalent to v − nu

dividing 1 + n2. In particular, we show that if |xn| � n and 1 + n2 is prime, then xn /∈ Z. Note
that the existence of infinitely many primes of the form 1 + n2 is a well-known open problem in
Number Theory. Denote by P the set of prime numbers and introduce

π2(n) := #
{
1 � k � n: 1 + k2 ∈ P

}
. (1.9)

It is conjectured that

π2(n) ∼ 2Cquad

√
n

lnn
, (1.10)

where

Cquad = 1

2

∏
p�2

(
1 − (−1)(p−1)/2

p − 1

)
. (1.11)

The expression

Cquad = 3ζ(6)

4Gζ(3)

∏
p≡1 mod 4

(
1 + 2

p3 − 1

)(
1 − 2

p(p − 1)2

)
(1.12)

gives an expression for Cquad in terms of primes congruent to 1 modulo 4. This is a result of
D. Shanks [17]. Here G is the Catalan constant

G =
∞∑

k=0

(−1)k

(2k + 1)2
. (1.13)

Theorem 7.10 shows that the condition |xn| � n is valid almost all the time. Thus, for almost
all primes of the form 1 + n2, we conclude that xn /∈ Z.
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Section 3 describes a relation between the sequence {xn: n ∈ N} and the alternating sums
S±(n) (see definitions in Section 3) of Newton’s elementary symmetric functions,

Sk(n) =
∑

1�i1<···<ik�n

i1 · · · ik, 1 � k � n, (1.14)

of the numbers {1,2, . . . , n}. Theorem 3.6 states that

xn = S−(n)

S+(n)
. (1.15)

This section also contains explicit analytic expressions for the 2-adic valuations of S±(n). In
particular it is shown that ν2(S±(n)) � 	n+1

4 
.
The point in Z2 given by

ρ(n) := (
S+(n), S−(n)

)
, (1.16)

has an angle equal to

tan−1 xn =
n∑

k=1

tan−1 k. (1.17)

The square of the modulus is given by

ωn := ∣∣ρ(n)
∣∣2 = (

1 + 12)(1 + 22)(1 + 32) · · · (1 + n2). (1.18)

We also consider a diophantine equation related to ωn. In the literature, the solution to

12 + 22 + · · · + n2 = m2 (1.19)

is known as Lucas’s square pyramid problem. The only solutions are (n,m) ∈ {(1,1)(24,70)}.
See [1] and [4] for details. Write

Rn(t) = (
1 + t2)(1 + 4t2)(1 + 9t2) · · · (1 + n2t2), (1.20)

then Lucas’ problem amounts to asking whether the coefficient of t2 in Rn(t) is itself a square.
It is natural that one should investigate the remaining coefficients of Rn, to check whether

these are perfect squares. The problem discussed in the present article deals with ωn = Rn(1)

which is the total sum of the coefficients of Rn(t). Based on extensive numerical evidence, we
propose that

Conjecture 1.5.1 For n � 4, the value ωn is not a square.

Note. It is worth mentioning that the data shows that ωn is far from being a square. Many of its
prime factors appear with single powers.

1 Note added in proof : This conjecture has been established by J. Cilleruelo, Squares in (12 +1) · · · (n2 +1), J. Number
Theory (2008), doi:10.1016/j.jnt.2007.11.001.
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The two conjectures presented above are related. Theorem 5.5 shows that failure of Conjecture
1.5 implies Conjecture 1.2. In Section 5, we consider the product ωn modulo certain primes. This
is used to establish Conjecture 1.5 for n in certain arithmetical progressions, for example, for
n ≡ 1 mod 3. We also describe a sieve that is used to verify this conjecture up to n � 103200, in
an efficient way. The algorithm is based on the simple observation that, if there is a prime p for
which νp(ωn) is an odd number, then ωn is not a square. Section 5 presents a connection between
Conjecture 1.5 and primes of the form 1 + x2. We show that the existence of an integer x in the
range [√n,n], such that 1 + x2 is a prime, implies Conjecture 1.5.

Section 6 explores the p-adic properties of ωn. An explicit 2-adic valuation produces a proof
of Conjecture 1.5 for n ≡ 1,2 mod 4. This section also discusses the case p odd, with p ≡
1 mod 4.

Note. We often employ the elementary fact that a prime divisor of ωn must be of the form
p ≡ 1 mod 4. This is equivalent to the statement that the congruence 1 + j2 ≡ 0 mod p has no
solutions for p ≡ 3 mod 4. This follows from: the only primes that are representable as sums of
two squares are those p ≡ 1 mod 4. The reader will find a proof in [13].

Theorem 6.5 states that

νp(ωn) ∼ 2n

p − 1
, as n → ∞. (1.21)

The proof of Theorem 6.5 makes use of the solutions to the congruence

1 + x2 ≡ 0 mod pi. (1.22)

In the base case i = 1, the congruence 1 + x2 ≡ 0 mod p has two solutions αp � α∗
p in the

interval 1 � x � p − 1. The first root αp satisfies

√
p − 1 � αp � (p − 1)/2. (1.23)

These two roots produce solutions to the congruences modulo pi . For example, for modulus p2,
we have that 1 + x2 ≡ 0 mod p2. Therefore, x = α + tp for some t ∈ {1,2, . . . , p} (or x =
α∗ + tp). The bounds on αp show that 1 + α2

p = pb1, with b1 �≡ 0 mod p. The congruence

1 + x2 ≡ 0 mod p2 yields 2αpt ≡ −b1 mod p and t is uniquely determined, say t = t1. We let

αp2 := αp + t1p. (1.24)

This argument produces a double sequence of numbers

αp,αp2, αp3, . . . and α∗
p,α∗

p2, α
∗
p3, . . . (1.25)

such that

1 + x2 ≡ 0 mod pi if and only if x ≡ αpi or x ≡ α∗
pi mod pi. (1.26)
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The construction shows that

αpi ≡ αpi−1 mod pi−1. (1.27)

The question of whether xn is an integer suggests the study of the sequence of fractional parts
defined by

yn := {xn} = xn − 	xn
.

Figure 1 shows the sequence {xn} for 1 � n � 5000, and Fig. 2 shows the corresponding frac-
tional parts. Observe the presence of granular regions combined with some solid curve regions.
This combination persists as n increases.

The sequence {yn} has many interesting dynamical properties. For instance, we point out the
lack of intrusion between the curves and the granular region observed in Fig. 3. These phenomena
will be considered in future work.

The last section contains miscellaneous topics and future directions inspired by the results
presented in this paper.

Fig. 1. The sequence xn.

Fig. 2. The fractional part of xn .
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Fig. 3. The fractional part of the sequence x2n .

2. The 2-adic valuations of xn

Let m ∈ Z and p a prime number. This section begins the discussion of the properties of the
p-adic valuation of xn, defined in (1.1). The following explicit evaluation of ν2(xn) is used to
establish that xn �= 0 for n � 4 by showing that ν2(xn) is well defined.

Theorem 2.1. Let n ∈ N and N = 	n
4 
. The 2-adic valuation of xn is given by

ν2(xn) =
{

ν2(2N(N + 1)) if n ≡ 0,3 mod 4,

0 if n ≡ 1,2 mod 4.

The demonstration of this theorem is divided into several steps. We begin with a crucial ex-
pression for xn+k in terms of xn.

Lemma 2.2. Let n, k ∈ N. There exist polynomials Pk and Qk for which

xn+k = Pk(n)xn + Qk(n)

Pk(n) − Qk(n)xn

. (2.1)

The polynomials Pk,Qk satisfy the recurrences

Pk+1(n) = Pk(n) − (n + k + 1)Qk(n),

Qk+1(n) = Qk(n) + (n + k + 1)Pk(n), (2.2)

with initial conditions P1(n) = 1 and Q1(n) = n + 1.

Proof. An elementary inductive argument, using (1.5) in the form

xn+1 = xn + n + 1

1 − (n + 1)xn

, (2.3)

gives the result. �
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We now establish Theorem 2.1 for the case n ≡ 0 mod 4.

Proposition 2.3. Let n ∈ N. Then ν2(x4n) = ν2(2n(n + 1)).

Proof. The proof is divided into cases according to the value of ν2(n). Write n = 2ν2(n)t , with t

odd.

Case 1: ν2(n) = 1. We write t = 2m + 1 and we need to prove

ν2(x16m+8) = 2. (2.4)

The proof is by induction starting at

ν2(x8) = ν2
(− 36

43

) = 2. (2.5)

To continue the inductive procedure we need a relation between x16(m+1)+8 and x16m+8.

Claim: there are odd integers c1, c2 such that

x16(m+1)+8 = 8c1 + c2x16m+8

c2 − 8c1x16m+8
. (2.6)

Lemma 2.2 gives

x16(m+1)+8 = P16(16m + 8)x16m+8 + Q16(16m + 8)

P16(16m + 8) − Q16(16m + 8)x16m+8
, (2.7)

and the representation (2.6) comes from a direct symbolic calculation:

P16(16m + 8) = 16 mod 32,

Q16(16m + 8) = 128 mod 256.

From (2.6) we obtain

ν2(x16(m+1)+8) = ν2

(
8c1 + c2x16m+8

c2 − 8c1x16m+8

)

= ν2

(
4 · 2c1 + c2

1
4x16m+8

c2 − 8c1x16m+8

)

and, using the inductive hypothesis ν2(
1
4x16m+8) = 0, we conclude the proof of Case 1.

Case 2: ν2(n) = 0, or ν2(n) > 1. We aim to show that

ν2(x4n) = ν2
(
2n(n + 1)

)
, (2.8)

where n = 2ν2(n)t with t odd.

We proceed by induction, for which we need the following claim.
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Claim: there are odd integers α1, α2 such that

x4n+4 = α2x4n + 4(n + 1)α1

α2 − 4(n + 1)α1x4n

. (2.9)

This representation comes from Lemma 2.2 in the form

x4n+4 = P4(4n)x4n + Q4(4n)

P4(4n) − Q4(4n)x4n

, (2.10)

and the observation that P4(4n) = 2 mod 4, and Q4(4n) = 8 mod 16.

We now consider the 2-adic valuation of (2.9). First of all,

ν2
(
α2 − 4(n + 1)α1x4n

) = 0, (2.11)

so that

ν2(x4n+4) = ν2
(
4(n + 1)α1 + α2x4n

)
. (2.12)

We now prove by induction that

ν2(x4n+4) = ν2
(
2(n + 1)(n + 2)

)
. (2.13)

Start with

ν2

(
x4n+4

2(n + 1)(n + 2)

)
= ν2

(
2α1

n + 2
+ α2x4n

2(n + 1)(n + 2)

)

= ν2

(
α1 + n

n + 2
(−α1 + μα2)

)
, (2.14)

with

μ = x4n

2n(n + 1)
. (2.15)

The inductive hypothesis states that ν2(μ) = 0. Therefore, ν2(α2μ − α1) � 1.
From n = 2ν2(n)t , we see that if ν2(n) = 0 then n is odd and the term in (2.14) is zero. On the

other hand, if ν2 > 1, then

ν2

(
n

n + 2

)
= ν2

(
2ν2(n)−1t

2ν2(n)−1t + 1

)
= ν2(n) − 1 > 0, (2.16)

and the term in (2.14) vanishes again. For either case, the proof of Proposition 2.3 is com-
plete. �

Proposition 2.3 yields the result of Theorem 2.1 in the case n ≡ 0 mod 4. The next step is to
establish the result of this theorem for the case n ≡ 3 mod 4.
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Proposition 2.4. Let n ∈ N. Then ν2(x4n+3) = ν2(2n(n + 1)).

Proof. We have the representation

x4n+3 = a1 + a2x4n

a2 − a1x4n

, (2.17)

with a1 even and a2 odd. Indeed, Lemma 2.2 yields

x4n+3 = P3(4n)x4n + Q3(4n)

P3(4n) − Q3(4n)x4n

, (2.18)

and an explicit evaluation of P3(4n) and Q3(4n) produces (2.17) with

a1 = 16n(n + 1)(2n + 1) and a2 = 24n2 + 24n + 5. (2.19)

From Proposition 2.3, we obtain that ν2(x4n) = ν2(2n(n + 1)) � 2, so that ν2(a2 − a1x4n) = 0.
We conclude that ν2(x4n+3) = ν2(a1 + a2x4n). Now observe that

ν2

(
x4n+3

2n(n + 1)

)
= ν2

(
a1

2n(n + 1)
+ a2 · x4n

2n(n + 1)

)

= ν2

(
8(2n + 1) + a2 · x4n

2n(n + 1)

)
= 0,

because a2 is an odd integer and ν2(
x4n

2n(n+1)
) = 0. The proof of Proposition 2.4 is complete. �

We have established Theorem 2.1 when n ≡ 0,3 mod 4. The next proposition settles the re-
maining cases n ≡ 1,2 mod 4.

Proposition 2.5. Let n ∈ N and assume n ≡ 1,2 mod 4. Then ν2(xn) = 0.

Proof. Let m = n − 2, so that m ≡ 3,0 mod 4. Lemma 2.2 gives

xm+2 = P2(m + 1)xm + Q2(m + 1)

P2(m + 1) − Q2(m + 1)xm

= (m + 1)(m + 2)xm − xm − (2m + 3)

(2m + 3)xm + (m + 1)(m + 2) − 1
. (2.20)

From Propositions 2.3 and 2.4 we have that ν2(xm) > 0. Then (2.20) shows that ν2(xn) = 0, as
claimed. �

The proof of Theorem 2.1 is complete. In particular, the expression for ν2(xn) in that theorem
shows that ν2(xn) is well defined. Hence we conclude the following main result.

Theorem 2.6. Let n � 4. Then xn �= 0.

Corollary 2.7. For any n ∈ N, the value ν2(xn) is well defined and the element xn is finite.
Moreover, xn �= −(n + 1),1/(n + 1).
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Section 7.4 contains information about the p-adic valuation of xn.

3. A representation by symmetric functions

In this section we consider the elementary symmetric functions of the symbols

An := {λ1, λ2, . . . , λn}, (3.1)

defined by

Sk(An) =
∑

1�i1<···<ik�n

λi1 · · ·λik , 1 � k � n. (3.2)

As usual S0(An) = 1. The sequence {xn} is now expressed in terms of these symmetric functions
for a specific choice of the symbols {λi}.

Definition 3.1. The even and odd components of the symmetric functions of An are, respectively,

S+(An) :=
∑
k�0

(−1)kS2k(An), and S−(An) :=
∑
k�0

(−1)kS2k+1(An). (3.3)

The next few properties are elementary.

Proposition 3.2. The generating function of the symmetric functions Sk is given by

Gn(z) =
n∏

j=1

(1 + zλj ) =
n∑

k=0

Sk(An)z
k. (3.4)

Moreover, the functions Sk satisfy the recurrence relation

Sk+1(An+1) = Sk+1(An) + λn+1Sk(An). (3.5)

The following result follows directly from (3.5).

Corollary 3.3. For n ∈ N, we have

λn+1S+(An) = S−(An+1) − S−(An),

−λn+1S−(An) = S+(An+1) − S+(An),

λnS+(An+1) = (λn + λn+1)S+(An) − λn+1
(
λ2

n + 1
)
S+(An−1),

λnS−(An+1) = (λn + λn+1)S−(An) − λn+1
(
λ2

n + 1
)
S−(An−1). (3.6)

Corollary 3.4. Assume λj �= 0 and define A∗
n = {λ−1

1 , λ−1
2 , . . . , λ−1

n } and

Λn :=
n∏

j=1

λj . (3.7)
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Then the parity-dependent identities

S+(A2n) = (−1)nΛnS+
(
A∗

2n

)
, S−(A2n) = (−1)n−1ΛnS−

(
A∗

2n

);
S+(A2n+1) = (−1)nΛnS−

(
A∗

2n+1

)
, S−(A2n+1) = (−1)nΛnS+

(
A∗

2n+1

)
(3.8)

hold. It follows that

S−(A2n)

S+(A2n)
= −S−(A∗

2n)

S+(A∗
2n)

,
S−(A2n+1)

S+(A2n+1)
= S+(A∗

2n+1)

S−(A∗
2n+1)

.

The functions S+ and S− in (3.3) can be given a matrix formulation:

Lemma 3.5. The functions S+ and S− satisfy

(
S+(An) −S−(An)

S−(An) S+(An)

)
=

n∏
j=1

(
1 −λj

λj 1

)
. (3.9)

Proof. Consider the matrices I + λjJ , where J = ( 0 −1
1 0

)
. As J 2 = −I and J commutes with

itself and I , the product in (3.9) is
∏

j (I +λjJ ). This results in a new matrix where the upper left
and lower right entries come from terms with an even power of J and the other two entries from
the terms with an odd power of J . These properties are in complete accord with the definitions

of S+ and S−, where one represents the complex number 1 + iλj as
( 1 −λj

λj 1

)
. �

Choose the symbols λk = k for 1 � k � n, and for simplicity write Sk(n) instead of Sk(An).

Theorem 3.6. Assume n � 0. Then

xn = S−(n)

S+(n)
(3.10)

where

S−(n) =
	(n−1)/2
∑

k=0

(−1)kS2k+1(n) and S+(n) =
	n/2
∑
k=0

(−1)kS2k(n) (3.11)

are the odd and even parts of {Sk(n)}, respectively.

Proof. The result is established by induction. Corollary 3.3, the recurrence (1.5), and the induc-
tion hypothesis yield

xn+1 = xn + (n + 1)

1 − (n + 1)xn

= S−(n) + (n + 1)S+(n)

S+(n) − (n + 1)S−(n)
.

This proves the assertion. �
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In this case Corollary 3.3 becomes:

Corollary 3.7. Let n ∈ N. Then

nS+(n − 1) = S−(n) − S−(n − 1),

−nS−(n − 1) = S+(n) − S+(n − 1).

Moreover

nS±(n + 1) = (2n + 1)S±(n) − (n + 1)
(
n2 + 1

)
S±(n − 1). (3.12)

The value of the 2-adic valuations of S+ and S− are described next.

Theorem 3.8. The even partial sequences satisfy

ν2
(
S+(n)

) =
⌊

n + 1

4

⌋
, (3.13)

and the odd components satisfy

ν2
(
S−(n)

) =
{

	n+1
4 
 if n ≡ 1,2 mod 4,

	n+1
4 
 + ν2(2	n

4 
(	n
4 + 1
)) if n ≡ 0,3 mod 4.

(3.14)

In particular, ν2(S+(n)) and ν2(S−(n)) are bounded from below by 	n+1
4 
.

Proof. The second identity in Corollary 3.3 gives

(n + 1)S+(n) = S−(n + 1) − S−(n), (3.15)

and (3.10) yields

(xn + n + 1)S+(n) = xn+1S+(n + 1). (3.16)

This identity is now used to show that

ν2
(
S+(4m − 1)

) = ν2
(
S+(4m)

) = ν2
(
S+(4m + 1)

) = ν2
(
S+(4m + 2)

)
. (3.17)

First let n = 4m in (3.16) to produce

(x4m + 4m + 1)S+(4m) = x4m+1S+(4m + 1). (3.18)

Theorem 2.1 shows that ν2(x4m) > 0 and ν2(x4m+1) = 0, therefore

ν2
(
S+(4m)

) = ν2
(
S+(4m + 1)

)
. (3.19)

Then put n = 4m + 1 in (3.16) to obtain

(x4m+1 + 4m + 2)S+(4m + 1) = x4m+2S+(4m + 2). (3.20)
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Theorem 2.1 shows that ν2(x4m+1) = ν2(x4m+2) = 0, so that

ν2
(
S+(4m + 1)

) = ν2
(
S+(4m + 2)

)
. (3.21)

The final step in the proof of (3.17) comes from the second formula in Corollary 3.3 and (3.10)
which yields

S+(n + 1) = (
1 − (n + 1)xn

)
S+(n). (3.22)

Now replace n = 4m − 1 to obtain

S+(4m) = (1 − 4m · x4m−1)S+(4m − 1). (3.23)

This implies ν2(S+(4m)) = ν2(S+(4m − 1)).
The evaluation

ν2
(
S+(4m)

) = m (3.24)

is now established by induction. The periodicity of ν2(S+) then produces (3.13). The value
S+(1) = −10 gives ν2(S+(1)) = 1 and (3.17) shows that (3.24) is correct for m = 1. The in-
ductive step is achieved by putting n = 4m + 2 in (3.22) to obtain

S+(4m + 3) = (
1 − (4m + 3)x4m+2

)
S+(4m + 2). (3.25)

Assume for the moment that

ν2
(
1 − (4m + 3)x4m+2

) = 1, (3.26)

and use (3.25) to obtain

ν2
(
S+(4m + 3)

) = 1 + ν2
(
S+(4m + 2)

)
. (3.27)

The induction hypothesis and (3.17) complete the proof of (3.24).
To prove (3.26) use (2.20) with n = 4m to obtain

x4m+2 = (4m + 1)(4m + 2)x4m − x4m − (8m + 3)

(8m + 3)x4m + (4m + 1)(4m + 2) − 1
. (3.28)

This can be expressed as

[
(8m + 3)x4m + tm

][
1 − (4m + 3)x4m+2

] = 2[um − vmx4m], (3.29)

with um = 24m2 + 24m+ 5, vm = 16m(1 +m)(2m+ 1) and tm = 2(4m+ 1)(2m+ 1)− 1. Thus
um and tm are odd and vm is even. Theorem 2.1 shows that ν2(x4m) > 0, so the 2-adic valuation
of the right-hand side of (3.29) is 1. On the left-hand side of (3.29), the 2-adic valuation of the
first term is zero, so (3.26) must hold. The proof of (3.13) is complete. The expression (3.14)
follows directly from (3.10). �
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4. Conditions for integrality of the sequence {xn}

The next goal of this paper is to examine the possibility that xn is an integer for n � 5. Recall
that the first few terms of this sequence are {0, 1, −3,0, 4, −9/19}.

Theorem 4.1. Let n > 4. Then, xn−1 and xn cannot both be integers.

Proof. Assume

xn = n + xn−1

1 − nxn−1
, (4.1)

and that xn−1, xn ∈ Z. Then |xn| � 1 because it has been established that xn �= 0 for n �= 3.
Therefore

|n + xn−1| � |1 − nxn−1|. (4.2)

The discussion of this inequality is divided into four cases according to the sign of the expressions
in (4.2).

Case 1: n + xn−1 � 0 and 1 − nxn−1 � 0. This is equivalent to −n � xn−1 � 1
n

. The fact that
xn−1 �= 0 produces −n � xn−1 � −1. In this case (4.2) becomes (1+n)xn−1 � 1−n. Therefore,
xn−1 � −n−1

n+1 � −1. Contradiction.

Case 2: n+xn−1 � 0 and 1−nxn−1 � 0. This implies xn−1 � 0. Then (4.2) becomes n+xn−1 �
nxn−1 − 1, that yields xn−1 � n+1

n−1 . For n > 3, this implies xn−1 < 2, that is, xn−1 = 1. Thus,

xn = n + 1

1 − n
, (4.3)

and it follows that xn < 0. Moreover, for n > 3,

xn = −n + 1

n − 1
> −2. (4.4)

This shows that xn = −1, contradicting (4.3).

Case 3: n + xn−1 � 0 and 1 − nxn−1 � 0. This is equivalent to xn−1 � −n. In this case (4.2)
becomes

−n − xn−1 � 1 − nxn−1, (4.5)

that is equivalent to

xn−1 � n + 1

n − 1
. (4.6)

This contradicts the fact that xn−1 � −n.

Case 4: n+ xn−1 � 0 and 1 −nxn−1 � 0. This is equivalent to xn−1 � −n and xn−1 � 1/n. This
situation does not occur. �
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The more general question of whether it is possible to have integers a, b and c such that

a + b

1 − ab
= c, (4.7)

is considered next. All integer solutions to (4.7) are determined. The authors wish to thank
B. Scher for suggesting this result.

Theorem 4.2. The values (1,2,−3) and (0, b, b) with b ∈ Z are solutions to (4.7). All other
integer solutions are obtained from these by using the fact that, if (a, b, c) solves (4.7), then so
do (−a,−b,−c), (a,−c,−b), (c, a,−b) and (b,−c,−a).

Proof. There are no solutions with all of |a|, |b|, |c| � 2. Indeed, it follows that

|a| + |b| � |a + b| � 2|1 − ab| � 2
(|ab| − 1

)
, (4.8)

and this implies that 2|a||b| − 2 � |a| + |b|. Thus |a| + 2 � (2|a| − 1)|b| � 4|a| − 2, that is,
3|a| � 4. This is a contradiction.

The solutions (0, b, b), (a,0, a), (a,−a,0) correspond to the trivial case in which one of the
variables vanishes. The case a = 1 yields

c = 1 + b

1 − b
= −1 − 2

b − 1
, (4.9)

and it follows that b − 1 = ±1,±2. This produces the solutions

(1,0,1), (1,2,−3), (1,−1,0), (1,3,−2). (4.10)

A similar analysis can be made with a = −1 and also |b| = 1 and |c| = 1. The statement about
the new solutions admits a direct verification. �
Assumption. Let n � 5 be an index for which xn ∈ Z. Write

xn−1 = u

v
with gcd(u, v) = 1. (4.11)

We now explore some arithmetical properties of xn−1 ∈ Q.

Proposition 4.3. Let n � 5. Then xn ∈ Z if and only if v − nu divides 1 + n2.

Proof. The result follows from gcd(v − nu,u) = 1 and xn = n + u(1 + n2)/(v − nu). �
Lemma 4.4. Assume xn ∈ Z and define c := gcd(xn − n,1 + nxn). Then c divides 1 + n2.

Proof. The recurrence for xn yields

u

v
= xn − n

1 + nxn

. (4.12)
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Therefore xn − n = cu and 1 + nxn = cv. From Proposition 4.3 we have (xn − n)(v − nu)/u =
1 + n2. Thus 1 + n2 = c(v − nu). �
Theorem 4.5. Let n � 5. Assume |xn| � n and that 1 + n2 is prime. Then xn /∈ Z.

Proof. Suppose xn = m ∈ Z. Then (3.10) gives mS+(n) = S−(n). Corollary 3.7 yields

(m − n)S+(n − 1) = (1 + mn)S−(n − 1). (4.13)

The identity 1 + n2 = (1 + mn) − n(m − n), shows that c = gcd(m − n,1 + mn) divides 1 + n2.
Similarly c divides 1 + m2. It follows that c = 1 or c = 1 + n2. In the latter case, m = n, since
|m| � n. This yields S−(n − 1) = 0. Therefore xn−1 = 0 and this is a contradiction. Therefore
c = 1. The relation (4.13) now gives

S+(n − 1) = 1 + mn, and S−(n − 1) = m − n. (4.14)

Theorem 3.8 shows that 2 divides S+(n − 1) and S−(n − 1), contradicting c = 1. �
Note. The hypothesis |xn| � n in the above theorem holds for almost every n ∈ N. Theorem 7.10
actually gives a sharper bound |xn| � 	n

2 
 + 1. But Theorem 7.10 does not hold for every xn.

Corollary 4.6. Let m ∈ Z and n ∈ N. Assume gcd(m − n,1 + mn) = 1. Then xn �= m.

5. A related diophantine equation

The sequence

ωn := (
1 + 12)(1 + 22)(1 + 32) · · · (1 + n2), (5.1)

that appeared as the modulus of the point ρ(n) = (S+(n), S−(n)), is studied in this section.
Numerical calculations suggest that ωn is never a square. This is the content of Conjecture 1.5:

The diophantine equation ωn = m2 has no solutions for n �= 3.

The arithmetical properties of ωn investigated in this section deal with ωn modulo a prime
p. Every odd prime divisor of a number of the form 1 + x2 must be congruent to 1 mod 4. See
Note on page 1810. Therefore the same holds for ωn. We consider here p ≡ 3 mod 4, because
we intend to analyze the quadratic residues of ωn modulo these primes.

Observe first that the simpler question, whether

(n + 1)! = (1 + 1)(1 + 2)(1 + 3)(1 + 4) · · · (1 + n) (5.2)

is a square, can be answered in the negative. This is the natural analog of Conjecture 1.5 with an
immediate generalization to odd exponents. See Proposition 5.1 and the remark following it.

Note. The equation

n! + k = m2 (5.3)
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was considered by H. Brocard [5,6] and then, unaware of its history, it was discussed by S. Ra-
manujan [16, p. 327]. B. Berndt and W. Galway [2] reported on the equation

(
n! + 1

p

)
= 0 or 1, where p is a prime. (5.4)

The only solutions of (5.3) or (5.4) are n = 4,5,7. Here ( a
p
) is the Legendre symbol, defined in

(5.15).

Proposition 5.1. The diophantine equation

Ωμ(n) := (
1 + 1μ

)(
1 + 2μ

) · · · (1 + nμ
) = m2 (5.5)

has no solutions for n > 12 and μ an odd prime.

Proof. Start with the factorization

Ωμ(n) =
n∏

j=1

(1 + j) × 1 + jμ

1 + j
. (5.6)

For n > 12, Erdős’s proof of Bertrand’s Postulate [10] gives the existence of two primes
p ≡ 1 mod 4 and q ≡ 3 mod 4 in the range 	n/2
 < p,q < 2	n/2
. This yields p,q < n

and 2p,2q � n + 1, so p,q divide (n + 1)! but p2, q2 do not, i.e., νp((n + 1)!) = 1 and
νq((n + 1)!) = 1. However one of these primes cannot divide the term involving the cyclotomic
polynomial (1 + jμ)/(1 + j). To see this, observe that the division algorithm gives

1 + jμ

1 + j
= (1 + j)Q(j) + μ. (5.7)

Suppose μ ≡ 1 mod 4, then the quantity in (5.7) has residue μ �≡ 0 mod q . Otherwise μ ≡
3 mod 4, in which case exchange p and q in the previous argument. We conclude that Ωμ(n)

cannot be a square. �
Note. Although the proof above was given for μ prime, the result should hold for any odd inte-
ger μ. The interested reader can supply the proof.

Note. In sharp contrast to Proposition 5.1, it seems that the problem is more resilient when μ is
even. The results described below offer some evidence towards the validity of Conjecture 1.5,
when μ = 2.

The symmetric functions S+ and S− defined in (3.11) are analyzed next. The first result fol-
lows directly from the definitions of Gn in (3.4).

Lemma 5.2. Let n ∈ N and i = √−1. Then

Gn(i) = S+(An) + iS−(An). (5.8)
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The modulus of (5.8) gives the Pythagorean relation

n∏
j=1

(
1 + λ2

j

) = S2+(An) + S2−(An). (5.9)

This, in fact, can be considered as a generalization to Euler’s product for sums of two squares:

2∏
j=1

(
1 + λ2

j

) = (1 + λ1λ2)
2 + (λ1 − λ2)

2.

Writing λ1 = a/b and λ2 = c/d gives the classical form(
a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2. (5.10)

This identity proves that products of numbers representable as sums of two squares are also
representable as sums of squares.

The special case λj = j produces

Gn(i) = S+(n) + iS−(n), (5.11)

and the modulus of this relation yields

ωn = S+(n)2 + S−(n)2. (5.12)

The following statement is an elementary consequence of the representation (3.10).

Proposition 5.3. Assume that for n � 5, the term xn is an integer m. Then

ωn =
n∏

j=1

(
1 + j2) = (

1 + m2)S2+(n). (5.13)

Proof. Immediate from (3.10) and (5.12). �
Corollary 5.4. Suppose xn = m ∈ Z. If n ≡ 0,3 mod 4, then m is even; if n ≡ 1,2 mod 4, then
m is odd.

Proposition 5.3 implies that, if xn = m for some m ∈ Z, then

Yn,m := (
1 + m2)ωn, (5.14)

is a perfect square. This cannot be excluded on general grounds: there are examples for which
this happens, for instance,(

1 + 212)ω5 = (
1 + 212)(1 + 12)(1 + 22)(1 + 32)(1 + 42)(1 + 52) = 44202.

The authors wish to thank James McLaughlin for this example.
The next result gives a sufficient condition for xn /∈ Z.
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Theorem 5.5. Assume that for n � 5, the term ωn is a square. Then xn is not an integer.

Proof. Proposition 5.3 implies that Yn,m = (1 + m2)ωn is a square. If ωn is also a square, then
so is 1 + m2. This is impossible. Notice that although m = 0 would give 1 + m2 as a square, we
know that xn �= 0 so m = 0 is not admissible. �
Note. Interestingly enough, we have conjectured that the hypothesis in Theorem 5.5 never holds.
See Conjecture 1.2. The remainder of the section explores the impossibility that ωn is a square.

Modular properties. The term ωn is now considered modulo a fixed prime p. This is used to
establish that ωn is not a square for a specific class of indices n. To illustrate the idea, take for
example the case p = 3. In this case,

ωn ≡
{

1 n ≡ 0,2 mod 3,

2 n ≡ 1 mod 3.

This can be seen by writing n = 3t + j , with 1 � j � 3, and observing that

ωn =
t∏

k=1

(
1 + k2)(1 + (k + 1)2)(1 + (k + 2)2) ×

3t+j∏
k=3t+1

(
1 + k2).

The first factor is congruent to 1 modulo 3 and the result follows by considering the three cases
for j . Therefore,

Corollary 5.6. Assume n ≡ 1 mod 3. Then ωn is not a square.

Corollary 5.10 gives a full generalization of Corollary 5.6. In preparation, the sequence ωn is
analyzed modulo p.

Theorem 5.7. Let p ≡ 3 mod 4 be a prime. Then the sequence

ωp,n := ωn mod p,

is cyclic of period at most p(p−1)
2 .

Proof. Since p ≡ 3 mod 4, the equation 1 + j2 ≡ 0 mod p has no solution. On the other hand,
for 1 � j � p, the terms 1+j2 mod p are symmetric with respect to p, that is, 1+j2 ≡ a mod p

if and only if 1 + (p − j)2 ≡ a mod p. Therefore,

p(p−1)/2∏
j=1

(
1 + j2) ≡

(
p∏

j=1

1 + j2

)(p−1)/2

mod p ≡
(

p−1∏
j=1

1 + j2

)(p−1)/2

mod p

≡
(

(p−1)/2∏
j=1

(
1 + j2)2

)(p−1)/2

mod p
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≡
(p−1)/2∏

j=1

(
1 + j2)p−1 mod p

≡ 1,

using Fermat’s little theorem. Hence, the periodicity of ωn modulo p is established. The period
is (at most)

(
p
2

)
. �

Definition 5.8. The Legendre symbol is defined by

(
a

p

)
:=

{1 if a is a quadratic residue mod p,

−1 if a is not a quadratic residue mod p,

0 if p divides a.

(5.15)

For a prime p ≡ 3 mod 4, define

ω∗
n,p :=

(
ωn

p

)
=

n∏
j=1

(
1 + j2

p

)
. (5.16)

Observe that 1+j2 �≡ 0 mod p, so ω∗
n,p �= 0. This was explained in the Note after Conjecture 1.5.

Theorem 5.9. Let p be a prime congruent to 3 modulo 4. The function ω∗
p,n is cyclic of period p.

Moreover, in the list

Lp :=
{(

1 + j2

p

)
: 1 � j � p

}
, (5.17)

the number of −1’s exceeds the number of +1’s by 1.

Proof. The periodicity follows from that of the Legendre symbol. To prove the second assertion,
we count the possible number of +1’s. The result of the theorem follows now from

p∑
j=1

(
1 + j2

p

)
= −1. (5.18)

In order to establish this we employ the Gaussian sums

Gp(a) :=
p∑

n=1

e2πian2/p. (5.19)

The reader will find in [15, Section 3.10, p. 151] (on the proof of quadratic reciprocity) detailed
proofs of the relation

Gp(a) =
(

a

p

)
Gp(1), (5.20)
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as well as the evaluation

Gp(1) =
{√

p for p ≡ 1 mod 4,

i
√

p for p ≡ 3 mod 4.
(5.21)

Now use (5.20) to produce

Gp(1)

p∑
j=0

(
1 + j2

p

)
=

p∑
j=0

p∑
n=1

e2πi(1+j2)n2/p

=
p∑

n=1

e2πin2/p

(
1 +

p∑
j=1

e2πi(jn)2/p

)

= Gp(1) + p +
p−1∑
n=1

e2πin2/p

p∑
j=1

e2πi(jn)2/p

= Gp(1) + p +
p−1∑
n=1

e2πin2/p

p∑
k=1

e2πik2/p

= Gp(1) + p + (
Gp(1) − 1

)
Gp(1) = p + G2

p(1).

The value Gp(1) = i
√

p stated in (5.21) produces

p∑
j=0

(
1 + j2

p

)
= 0. (5.22)

The evaluation (5.18) now follows from ( 1
p
) = 1. �

Note. Fix a prime p ≡ 3 mod 4 and introduce the notation

ξ
p
j :=

(
1 + j2

p

)
. (5.23)

Consider the sequence of partial products

π
p
k :=

k∏
j=0

ξ
p
j , k = 0,1,2, . . . . (5.24)

The periodicity of the Legendre symbol shows that the sequence {πp
k : k � 0} is also of period p.

Moreover,

π
p

0 = 1 and π
p

p−1 = 1, (5.25)

given that there are an even number (= p+1
2 ) of −1’s in the list Lp .
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The next result can be employed to show that ωn is not a square along certain arithmetic
progressions.

Corollary 5.10. Let p ≡ 3 mod 4 and assume π
p
k = −1. Then ωn is not a square for n ≡

k mod p.

Definition 5.11. A valid configuration is a sequence of +1’s and −1’s of length p, with p+1
2

repetitions of −1’s and p−1
2 of +1’s. It is also required that the sequence starts and end with +1.

Theorem 5.12. The minimum number of −1’s in the sequence

Πp := {
π

p
k : 1 � k � p

}
(5.26)

is p+1
4 . The maximum number is 3p−1

4 .

Proof. The minimum number is achieved when all the p+1
2 occurrences of −1 are at the right

and this number is p+1
4 . To prove this take a valid configuration and assume that it has a block

of interior +1:

+1, ξ
p

2 , ξ
p

3 , . . . , ξ
p
s , +1, +1, ξ

p

s+3, ξ
p

s+4, . . . , ξ
p

p−1 (5.27)

(where we have taken two internal +1’s to illustrate the argument). Moving the (two) internal
+1’s to the left does not decrease the number of −1’s in the product list Πp . Indeed, if the partial
product of the first s terms is +1, then the internal +1 simply repeat the +1. On the other hand,
if the partial product is −1, then the internal +1 have the effect of repeating this −1, hence the
total number of partial products equal to −1 increases.

The same argument shows that the maximum number of −1’s in Πp is 3p−1
4 . This occurs

when all the −1’s are aligned to the left of the +1’s. �
Corollary 5.13. For each prime p ≡ 3 mod 4, there exist at least p+1

4 numbers ki ∈ {0,1,2, . . . ,

p−1} such that ωn is not a square for n ≡ ki mod p. This yields a multi-infinite family of indices
n for which ωn is not square.

Note. The total number of possible configurations of +1’s and −1’s is
(

p−1
(p−1)/2

)
. It would be of

interest to explore how the +1’s and −1’s are distributed in Πp as p varies. Figure 4 shows the
proportion of −1’s in Πp; it is around 1/2 for p large.

6. The p-adic valuation of ωn

In this section we consider the p-adic valuation of ωn. Our goal is to describe some relations
between n and p that guarantees νp(ωn) is an odd integer.

Every odd prime divisor of ωn is congruent to 1 modulo 4. See Note on page 1810. We
consider first the case p = 2 and then the odd primes. The case p = 2 admits a complete analytic
solution. To evaluate ν2(ωn), define

μ2(j) =
{

0 if j ≡ 0 mod 2,

1 if j ≡ 1 mod 2.
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Fig. 4. Proportion of minus ones for 6 � p � 3000. The vertical range is 0.3 � y � 0.7.

Proposition 6.1. The 2-adic valuation of ωn is given by

ν2(ωn) =
⌊

n + 1

2

⌋
. (6.1)

Proof. From ν2(1 + j2) = μ2(j), it follows that

ν2(ωn) =
n∑

j=1

μ2(j) =
	n+1

2 
∑
k=1

1 =
⌊

n + 1

2

⌋
. �

Corollary 6.2. Suppose n ≡ 1,2 mod 4, then ωn is not a square.

Proof. For these values of n, the valuation νp(ωn) is odd. �
Combining the previous corollary with Corollary 5.6 yields a result modulo 12.

Corollary 6.3. Suppose n �≡ 0,3,8,11 mod 12, then ωn is not a square.

The next result employs the solutions to x2 +1 ≡ 0 mod p. This congruence has two solutions
in the range 2 � x � p − 1. We denote by αp the root that satisfies 2 � αp � p−1

2 . The other root
is α∗

p = p − αp . A simple argument shows the lower bound αp �
√

p − 1. Moreover, this lower

bound is achieved precisely when p is a prime of the form 1 + n2.

Theorem 6.4. Let p be a prime, p ≡ 1 mod 4. Assume n ∈ N lies in the range αp � n < p − αp .
Then ωn is not a square.

Proof. In the product

ωn =
n∏

j=1

(
1 + j2), (6.2)
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only the term corresponding to j = αp is divisible by p. Moreover, since 1 + n2 < p2, we have
νp(1 + α2

p) = 1. �
The previous theorem guarantees that ωn is not a square for n in an interval of length p −

2αp . Therefore it is efficient for those primes p for which αp is small. The distribution of αp

is a delicate question. We have computed the root αp for primes of the form p = 4m + 1 in
the range 1 � m � 20 000. The ratio of αp to its upper bound 2m + 1 attained its maximum
value 38 228/38 367 ∼ 0.996377 at m = 19 183 for the prime p = 76 733. The minimum value
280/39 201 ∼ 0.00714267 is achieved at m = 19 600 for the prime p = 78 401. This is the largest
prime of the form 1 + n2 in the range considered.

A result of W. Duke et al. [8], shows that the normalized values

αnor
p := αp − √

p − 1

(p − 1)/2 − √
p − 1

, (6.3)

are uniformly distributed on [0, x] × [0,1] for large x.

Note. Corollary 5.13 and Theorem 6.4 are a two-pronged approach in compiling evidence in
favor of Conjecture 1.5. The former gives a successive list of infinite indices n, while the latter
supplies endless interval ranges for n so that ωn is not a square.

To each prime p ≡ 1 mod 4, associate the interval of N defined by

Ip := [αp,p − 1 − αp]. (6.4)

Thus, if n ∈ Ip , then ωn is not a square. The authors wish to thank N. Calkin for the sieve method
used in the computations described in the next paragraph.

Conjecture 1.5 would be true if

⋃
p≡1 mod 4

Ip = N − {3}. (6.5)

For notational simplicity, write ap = αp and bp = p − αp − 1, so that Ip = [ap, bp]. In
order to verify Conjecture 1.5 up to a certain bound n∗, it suffices to exhibit a sequence of
primes p1,p2, . . . , pk so that 4 ∈ Ip1 , each interval Ipj

intersects the next one, and that bpk
> n∗.

Proceed as follows: construct each pi+1 so that api+1 is just below bpi
− 1: the way to do this

is to consider, for j = 1,2, . . . , the quantity m2 + 1 where m = pi − api
− j : if there is a prime

q > 2m, that divides m2 + 1, then m is the smaller root of −1, namely aq . Hence we may take
pi+1 = q and api+1 = m.

In practice, we look for the largest prime q appearing as a factor of m2 + 1 for the first 6
values of m less than bpi

− 1.
Start with p1 = 17 and check that ap1 = 4 and bp1 = 12. Therefore the first interval is Ip1 =

[4,12] and contains 4 as required. Now consider numbers of the form m := bp1 − j = 12 − j .
The case j = 2 gives

(m − 2)2 + 1 = 101. (6.6)
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Therefore, p2 = 101 and the second interval is Ip2 = [10,90]. The process now continues with
m := 90 − j and, with j = 6, we find

(90 − 6)2 + 1 = 7057. (6.7)

We choose p3 = 7057 and

Ip3 = [84,6972]. (6.8)

The list below provides the first six intervals. The chosen primes are p1 = 17, p2 = 101,
p3 = 7057, p4 = 48 580 901, p5 = 1 179 713 094 952 813.

Ip1 = [4,12],
Ip2 = [10,90],
Ip3 = [84,6972],
Ip4 = [6970,48 573 930],
Ip5 = [48 573 925,1 179 713 046 378 883].

Continuing this process, the next 8 more steps produce the following:

Computational fact. Assume ωn is a square. Then either n = 3 or n > 103200.

Proposition 6.1 provides an exact formula for the 2-adic valuation of ωn. The extension of
this result for odd primes seems unlikely. We now establish an asymptotic result. Observe that

ωn =
n∏

j=1

(
1 + j2) = n!2 ×

n∏
j=1

(
1 + 1/j2). (6.9)

As n → ∞ we have

n∏
j=1

(
1 + 1/j2) →

∞∏
j=1

(
1 + 1/j2) = sinhπ

π
.

This follows from the infinite product expansion

sinπz

πz
=

∞∏
j=1

(
1 − z2/j2) with z = i. (6.10)

We conclude that ωn = O(n!2). There is a famous result of Legendre [12,14] for the p-adic
valuation of n!. It states that

νp(n!) = n − sp(n)

p − 1
(6.11)
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where sp(n) is the sum of the base − p digits of n. In particular, sp(n) = O(logp n) as n → ∞.
Therefore

νp

(
n!2) ∼ 2n

p − 1
. (6.12)

The same is true for νp(ωn).

Theorem 6.5. Let p be an odd prime congruent to 1 mod 4. Then

νp(ωn) ∼ 2n

p − 1
.

Proof. Consider first the contribution of αp . Count the number of terms N1 in the product for ωn

that are divisible by p. Recall that 1+ j2 ≡ 0 mod p if and only if j ≡ α or α∗ = p −αp mod p.
Therefore, each interval of length p contains two such indices. The contribution of αp is

N1 =
⌊

n

p

⌋
+

{
1 if αp + 	 n

p

p � n,

0 if αp + 	 n
p

p > n.

(6.13)

Therefore N1 � 	 n
p

. Similarly, by considering the elements αpi described (1.25), one sees that

the number of terms in [1, n] divisible by pi is at least 	 n
pi 
. Therefore, the contribution of αp to

νp(ωn), denoted by νp(ωn,αp), is at least

νp(ωn,αp) �
∞∑

k=1

⌊
n

pk

⌋
=

zp,n∑
k=1

⌊
n

pk

⌋
,

where zp,n = 	logp n
. Now

νp(ωn,αp) �
zp,n∑
k=1

⌊
n

p

⌋
�

zn,p∑
k=1

(
n

pk
− 1

)

= n

(
1 − p−1−zp,n

1 − 1/p
− 1

)
− zp,n � n

(
1 − 1/n

1 − 1/p
− 1

)
− zp,n

= n − p

p − 1
− zp,n.

Thus

p − 1

n
νp(ωn,αp) � 1 − p

n
− p − 1

n
zp,n, (6.14)

and it follows that

lim inf
n→∞

p − 1

n
νp(ωn,αp) � 1. (6.15)
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The same holds for the contribution from α∗
p . We conclude that

lim inf
n→∞

p − 1

2n
νp(ωn) � 1. (6.16)

To obtain an upper bound, observe again that νp(1 + j2) = 0 unless j ≡ αp or α∗
p modulo p.

Define

τn :=
n∏

k=1

(
1 + (pk + αp)2) × (

1 + (
pk + α∗

p

)2)
. (6.17)

The bounds on αp show that 1 + α2
p = pb1 with b1 �≡ 0 mod p. Write

1 + (pk + αp)2 = pf (k), (6.18)

with

f (k) = b1 + 2αpk + pk2, (6.19)

and conclude that

νp(τn) = 2(n + 1) +
n∑

k=0

νp

(
f (k)

) +
n∑

k=0

νp

(
f ∗(k)

)
, (6.20)

where f ∗(k) is formed from α∗
p as f was from αp .

Define

r(n) := Max
{
j : pj divides f (k) for some k ∈ {1,2, . . . , n}}, (6.21)

and let Ni be the number of terms in the sum (6.20) such that f (k) is divisible by pi . Then

n∑
k=0

νp

(
f (k)

) = N1 + N2 + · · · + Nr(n)

� r(n) +
∞∑
i=1

⌊
n

pi

⌋

� r(n) + n

p − 1
.

Taking into account the contribution of α∗
p we obtain

νp

(
τ(n)

)
� 2(n + 1) + 2r(n) + 2n

p − 1
. (6.22)

To obtain the estimate for νp(ωn), observe that

νp(ωpn) = νp(τn−1). (6.23)
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Now use n � Np with N := 	 n
p

 + 1 and since |f (k)| � Ck3 shows that pr(n) � Cn3, then

νp(ωn) � νp(ωNp) = νp(τN−1)

� 2

(⌊
n

p

⌋
+ 1

)
+ 2r

(⌊
n

p

⌋)
+ 2	 n

p



p − 1

� 2n

p − 1
+ 2 + 2r

(⌊
n

p

⌋)
.

We conclude that

lim sup
n→∞

p − 1

2n
νp(ωn) � 1. � (6.24)

Remark 1. The error term

errorp(n) := νp(ωn) − 2n

p − 1
,

in Theorem 6.5 is shown in Fig. 5 for p = 29 and 1 � n � 34 000. Figure 6 shows the differ-
ence between νp(ωn) and νp(n!2) for the same values of n. These two functions have the same
asymptotic behavior and νp(n!2) acts as a stabilizing factor by absorbing the fluctuations. The
patterns appearing in this error terms have certain structure that deserves to be elucidated.

Remark 2. The polynomial f , appearing in (6.19), satisfies f (k) ≡ b1 + 2αpk mod p. There-
fore there is a unique solution to the congruence f (k) ≡ 0 mod p. Moreover, f ′(k) ≡ 2αp �≡
0 mod p. Hensel’s lemma [11] guarantees the existence of β̄ ∈ Zp such that f (β̄) = 0 in Qp .
The number β̄ is written as

β̄ = β0 + β1p + β2p
2 + · · · . (6.25)

Fig. 5. Graph of error29(n) for n � 34 000.



Author's personal copy

1836 T. Amdeberhan et al. / Journal of Number Theory 128 (2008) 1807–1846

Fig. 6. Graph of Phi(n) := ν29(ωn) − ν29(n!2) for n � 1000.

Moreover,

f (k) ≡ 0 mod pi if and only if k ≡
i−1∑
m=0

βmpm mod pi. (6.26)

Introduce the notation

γ (i,p) = β0 + β1p + · · · + βi−1p
i−1, (6.27)

and conclude that

n∑
k=0

νp

(
f (k)

) =
r(n)∑
i=1

n∑
k≡γ (i,p) mod p

1.

The fact is that

Ni =
n∑

k≡γ (i,p) mod p

1. (6.28)

This point of view yields a more general result. Details will be presented elsewhere.

Theorem 6.6. Let P be a polynomial with integer coefficients and without integer roots. Define

zp := ∣∣{b ∈ {1,2, . . . , p}: P(b) ≡ 0 mod p
}∣∣. (6.29)

Assume that all the zp roots satisfy the hypothesis of Hensel’s lemma. Then the recurrence tn :=
P(n)tn−1, with t0 = 1 satisfies

νp(tn) ∼ zpn

p − 1
as n → ∞. (6.30)

The next result establishes a connection between ωn and primes of the form 1 + m2. The
authors wish to thank C. Pomerance for providing this result.
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Theorem 6.7. Suppose that for n ∈ N there exists an integer x0 such that 	√n 
 + 2 � x0 � n

and p = 1 + x2
0 is a prime. Then ωn is not a square.

Proof. We show that the prime p appears with exponent 1 in the product ωn. The congruence
1+x2 ≡ 0 mod p has two solutions αp , p−αp . The bounds on x0 imply that x0 = αp . It follows
that 	√n 
+2 � αp � n. Then the other root p−αp is bigger than n because α2

p −αp +1−n > 0.

To check this inequality observe that the largest root of x2 − x + 1 + n = 0 is (1 + √
4n − 3)/2

and

αp >
√

n + 1 >
1

2
(1 + √

4n − 3 ).

To conclude the proof, observe that any other factor in ωn that produces a multiple of p must be
of the form αp + mp. But

αp + p = p − αp + 2αp = p + αp > n,

so they are outside the range 4 � j � n. �
The previous theorem can be improved by relaxing the condition that 1 + x2 is a prime.

Proposition 6.8. Suppose that for n ∈ N there exists a prime p, a real number cn ∈ (0,1] and
positive integers x, y, with y odd, such that(

1 + c−1
n

)
x � p, ncn < x � n, and νp

(
1 + x2) = y. (6.31)

Then ωn is not a square.

Proof. The condition x � n shows that py divides ωn. The hypothesis imply that x is one of the
solutions to 1 + x2 ≡ 0 mod p. The other solution is p − x � c−1

n x > n, so this term does not
contribute to the product ωn. It follows that νp(ωn) = y. The fact that y is odd, shows that ωn is
not a square. �
7. Miscellaneous

In this section we present several problems inspired by the results presented in this paper.

7.1. Connections with triangular numbers

Splitting the product

ωn =
n∏

j=1

(
1 + j2) (7.1)

according to the parity of the index j produces

n∏
j=1

(
1 + j2) = 2	(n−1)/2
−1

	n/2
∏
k=1

(
1 + 4k2) ×

	(n−1)/2
∏
k=1

(
1 + 4Δ(k)

)
, (7.2)
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where

Δ(k) = k(k + 1)

2
(7.3)

is the kth triangular number.

Conjecture 7.1. The even and odd parts of ωn are defined by

tn :=
n∏

k=1

(
1 + 2k(k − 1)

)
, and sn :=

n∏
k=1

(
1 + 4k2). (7.4)

These products involve the triangular and square numbers respectively. Neither of them is a
perfect square.

We now present a problem describing a connection between triangular numbers and primes
of the form 1 + x2.

Conjecture 7.2. Assume n ∈ N and n �= 27,35. Then there exists an index x, such that Δn � x <

Δn+1 and 1 + x2 is prime.

Note. The authors wish to thank Dante Manna, who verified this conjecture up to n = 106.

The next statement is the result of our study of the set of square-triangular numbers:

U := {1 + 4Δk: Δk is a square}. (7.5)

Proposition 7.3. Let x = Δk be a square triangular number, i.e., s := 1 + 4x ∈ U . Then

(a) (s − 1)(2s − 1) is a perfect square.
(b) s is not a prime, unless s = 5.

Proof. Part (a) is elementary: (s −1)(2s −1) = 4j2(2k +1)2, where x = Δk = j2. To prove (b),
assume s is prime and observe from (a) that s(2s−3) = (j −1)(j +1). If s divides j −1, we have
s(2s −3) = sb(sb+2), for some b ∈ N. This is valid only if s = 5. On the other hand, if s divides
j + 1, we have 2s − 3 = c(sc − 2). An elementary argument shows that this is impossible. �
Note. Part (b) of Proposition 7.3 informs us that identical entries in the two products from (7.2)
cannot produce the same primes.

7.2. Connections with Stirling numbers

The Stirling numbers of the first kind are given by

n∏
k=1

(1 + kx) =
n+1∑
k=1

(−x)n+1−ks(n + 1, k). (7.6)



Author's personal copy

T. Amdeberhan et al. / Journal of Number Theory 128 (2008) 1807–1846 1839

It follows that

S+(n) + iS−(n) =
n+1∑
k=1

ik−1s(n + 1, k). (7.7)

Introduce the notation

Cj (n) :=
∑
k�0

∣∣s(n + 1,4k + j)
∣∣ (7.8)

for 0 � j � 3. The number Cj (n) counts the total number of permutations of {1,2, . . . , n + 1},
which contain exactly 4k + j cycles, k � 0.

The statements below provide a combinatorial interpretation of Conjecture 1.2 as well as
consequences of our established results.

Proposition 7.4. The symmetric functions S±(n) are given by

(−1)nS+(2n) = C1(2n) − C3(2n),

(−1)nS−(2n) = C0(2n) − C2(2n),

(−1)n+1S+(2n + 1) = C0(2n + 1) − C2(2n + 1),

(−1)nS−(2n + 1) = C1(2n + 1) − C3(2n + 1).

Proposition 7.5. The problem of whether xn or 1/xn is an integer is equivalent to finding n ∈ N

such that either C0 − C2 divides C1 − C3, or vice versa.

For example, it is clear that C0 + C2 = C1 + C3 = n!/2. Theorem 2.6 and its Corollary 2.7
show the following result.

Corollary 7.6. C0 �= C2 and C1 �= C3 for n � 5. Also C0 − C2 �= n(C1 − C3) and C1 − C3 �=
n(C2 − C0).

7.3. The bound |xn| � n

In this section we prove that the even and odd subsequence of xn, namely {x2n} and {x2n+1}
satisfy the bounds |x2n| � 2n and similarly |x2n+1| � 2n+1 for almost all n ∈ N. The exceptions
are described below. We give the details for x2n.

The parity dependent identities (3.8) show that

x2n = tan

(
−

2n∑
k=1

tan−1 1

k

)
. (7.9)

The sequence x2n begins in a decreasing fashion:{
4,

105

73
∼ 1.4383,

36

43
∼ 0.837209,

2387

4511
∼ 0.529151,

104 472

322 921
∼ 0.323522, . . .

}
.
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This continues until the angle

−
2n∑

k=1

tan−1 1

k
>

π

2
, (7.10)

so that the sequence jumps to the next branch of the tangent function. For each j ∈ N define the
transition points

κ+
j := Inf

{
N ∈ N: −

2N∑
k=1

tan−1 1

k
> (2j − 1)

π

2

}
. (7.11)

The divergence of the series
∑

tan−1 1/k guarantees the existence of the sequence

κ := {
κ+

1 , κ+
2 , κ+

3 , . . .
}
. (7.12)

Conjecture 7.7. There exits a constant κ∞ such that the sequence κ+
j grows roughly as κ

j−1∞ .
Numerical calculations show that κ∞ ∼ 23.1.

Define the interval

Ij := {
m ∈ N: κ+

j � m < κ+
j+1

}
. (7.13)

The construction of the transition points immediately gives the next result:

Lemma 7.8. Fix j ∈ N. Then the sequence {x2n: n ∈ Ij } is decreasing.

Corollary 7.9. Let n,m ∈ Ij and n �= m. Then xn �= xm.

We now establish the promised bound.

Theorem 7.10. Fix j ∈ N. Then, for every n in the range κ+
j + 1 � n � κ+

j+1 − 2, we have
|x2n| � n + 1.

Proof. The sequence {x2n: n ∈ N} satisfies the recurrence

x2n+2 = a · x2n − b

b · x2n + a
, (7.14)

where a = 2(2n + 1)(n + 1) − 1 and b = 4n + 3. This follows by iteration of (1.5). The proof of
the bound is divided in cases according to the sign of x2n.

Case 1. If x2n+2 > 0, then x2n > x2n+2 > 0 by Lemma 7.8. The result now follows from

x2n+2 = a − b/x2n

b + a/x2n

<
a

b
� n + 1, (7.15)

and the base case x2κ+
j

> 0.
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Case 2. If x2n−2 < 0, then x2n < 0. We now take x2κ+
j+1−2 < 0 as the base case and work back-

wards. Define y2n := −x2n. Then (7.15) gives

y2n−2 = |x2n−2| = c · y2n − d

d · y2n + c
, (7.16)

with c := 2n(2n − 1) − 1 and d := 4n − 1. The same argument given in Case 1 now yields
|x2n−2| � n.

In both cases we get the bound |x2n| � n + 1. �
Corollary 7.11. Assume n /∈ κ . Then |x2n| � n + 1. A similar conclusion can be drawn for the
odd terms.

7.4. The p-adic valuation of xn

It might be possible to extend the results on ν2(xn) to odd prime valuations. Some information
about the case p = 3 is given next. Extensive symbolic calculations suggest that

ν3(xn) = 0, (7.17)

precisely when n � 5 and n ≡ 1 mod 3. Similar conjectures can be made for the set

τ3,1 := {
n ∈ N: ν3(xn) = 1

} = {6,11,15,20,24, . . .}. (7.18)

We have observed that the difference set

τ+
3,1 := {

τ3,1(n + 1) − τ3,1(n): n � 5
}
, (7.19)

is the periodic sequence

τ+
3,1 = {5,4} = {5,4,5,4, . . .}. (7.20)

Similarly

τ+
3,2 = {3,1,3,2,3,1,3,11},

τ+
3,3 = {3,1,3,20,3,1,3,47},

τ+
3,4 = {3,1,3,74,3,1,3,155},

where we have only indicated the period.

There is a marked difference in the behavior according to whether p ≡ 1 mod 4 or 3 mod 4.
Figure 7 shows ν3(xn) and Fig. 8 shows ν5(xn).

An argument similar to the proof of Theorem 2.1 yields the next result. The statement was
found by examining the data given in the list τ+

3,s described above.
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Fig. 7. The 3-adic valuation of xn.

Fig. 8. The 5-adic valuation of xn.

Theorem 7.12. The 3-adic valuation of xn is given by

ν3(xn) = ν3
(
n(n + 1)

) + δ9Z+5,n · ν3

(⌊
n + 4

3

⌋)
+ δ9Z+3,n · ν3

(
3

⌊
n + 3

9

⌋)
.

Here δA,n is the Kronecker delta: 1 if n ∈ A and 0 otherwise.

Once again, the next result can be established as in the case p = 2.

Proposition 7.13. The even partial sums satisfy ν3(S+(n)) = 0 and the odd ones ν3(S−(n)) =
ν3(xn).

7.5. Geometric properties of the sequence xn

The representation

xn = S−(n)

S+(n)
, (7.21)
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established in Theorem 3.6 has a geometric interpretation. We consider the map

ρ(n) := (
S+(n), S−(n)

)
. (7.22)

The point ρ(n) has modulus ωn and the sequence

ωn

n!2 =
n∏

j=1

(
1 + 1

j2

)
(7.23)

converges from below to its limit sinhπ
π

.
Define

a+(n) := S+(n)

n! , a−(n) := S−(n)

n! . (7.24)

Naturally, xn = a−(n)/a+(n). We consider the generating functions

A+(x) :=
∞∑

n=1

a+(n)xn, A−(x) :=
∞∑

n=1

a−(n)xn. (7.25)

Lemma 7.14. The sequences a±(n) satisfy the discrete dynamical system

(n + 1)a−(n + 1) − a−(n) = (n + 1)a+(n),

(n + 1)a+(n + 1) − a+(n) = −(n + 1)a−(n), (7.26)

with initial conditions a+(1) = 1, a+(2) = −1, a−(1) = 1, a−(2) = 3. Therefore, the generating
functions are given by

A+(x) = etan−1 x

1 + x2

(
x cos

(
log

(√
1 + x2

)) + sin
(
log

√
1 + x2

))
,

A−(x) = etan−1 x

1 + x2

(
x cos

(
log

(√
1 + x2

)) − x sin
(
log

√
1 + x2

))
.

Thus, the pair (A+(x),A−(x)) forms a spiral in the complex plane, running inward towards the
origin.

Proof. The recurrences (7.26) show that A+(x) and A−(x) both solve the second order differ-
ential equation

(1 + x)
(
1 + x2)D2y + (

3x2 + 2x − 3
)
Dy + 2(x + 2)y = 0. (7.27)

Standard techniques produce the analytic solutions given above. �
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7.6. A connection with Euler’s constant

The claim in this section corresponds to an analogue of Proposition 5.1. More precisely, the
proof of the above-mentioned proposition exploits the existence of a prime between an integer
and its double (this is Bertrand’s postulate). In the same spirit, our claim highlights a prime p be-
tween n and 1+n2, for which νp(ωn) = 1, that is, p divides ωn but p2 does not. The conclusions
described in this section are by-in-large empirical and the arguments are heuristic.

Section 7.5 shows that the expressions

ωn = (
1 + 12)(1 + 22)(1 + 32) · · · (1 + n2), (7.28)

and n!2 are of comparable size. Moreover, Theorem 6.5 establishes that the p-adic valuations of
these two terms have the same asymptotic behavior. Naturally, every prime p < n divides n!, but
only primes p ≡ 1 mod 4 divide ωn. Therefore, ωn is missing (essentially) half the primes of n!2.

Denote by P := {p1 < p2 < p3 · · ·} be the complete set of primes, and P(1) := {q1 < q2 <

q3 < · · ·} be those primes qi ≡ 1 mod 4. The classical prime number theorem shows that pn ∼
n logn, and P. Dusart [9] proved that

n logn + n log logn − n < pn < n logn + n log logn, n � 2. (7.29)

The proof is based on the knowledge of the first 1.5 billion zeros of the Riemann zeta function
ζ(s), that lie on the critical line Re s = 1

2 . Assuming that the primes in P(1) are nearly equi-
distributed over P, we conclude that

2n log 2n + 2n log log 2n − 2n < qn < 2n log 2n + 2n log log 2n, (7.30)

for infinitely many values n.
The objective is now to produce a sequence of indices y(n) so that qn divides ωy(n), but q2

n

does not. In order to accomplish this, observe first that, if q is a prime such that m < q < 1 +m2,
then νq(ωm) � 2. In fact, νq(ωm) = 2 if and only if both αq,α∗

q � m.
The inequalities (7.30) suggest that we choose m around 2n log 2n. In order to fine-tune the

constant in m = C3n logn, we make use of the inequalities

√
C1m! < √

ωm <
√

C2m!, (7.31)

with C1 � 5
2 and C2 � sinhπ

π
∼ 3.676. The identity

sinhπ

π
= lim

k→∞

k∏
j=1

(
1 + 1

j2

)
(7.32)

and the observation

k∏
j=1

(
1 + 1

j2

)
∼ 1 + H

(2)
k , (7.33)
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where H
(2)
k is the second harmonic number, lead to

√
H

(2)
k ∼ H

(1)
k ∼ logk + γ, (7.34)

where γ is Euler’s constant defined by

γ := lim
n→∞

n∑
k=1

1

k
− logn. (7.35)

The logarithmic part has been absorbed, so we consider m = y(n) ∼ γ n logn. Numerical exper-
iments suggested the extra factor

√
5 in the next statement.

Heuristic result. Define y(n) := 	√5γ n logn
. Then, for almost all n ∈ N, we have

νqn(ωy(n)) = 1. (7.36)

Finally, consider the intervals Jk := [y(k), y(k + 1)), with y(k) as above. This yields a parti-
tion of N in the form

N =
⋃
k�2

Jk. (7.37)

Given n ∈ N, there is a unique k such that n ∈ Jk . Define the map

Φ(n) =
⎧⎨
⎩

νqk
(ωn) if νqk

(ωyk
) = 1,

νqk−1(ωn) if νqk
(ωyk

) = 0,

νqk+1(ωn) if νqk
(ωyk

) = 2.

(7.38)

The previous theorem guarantees that almost all cases correspond to the first choice in (7.38).
The other two cases rectify the exceptions. The last two assignments are implicitly guided by the
prime gaps to the effect that

pN+1 − pN = O(
√

pN logpN). (7.39)

H. Cramer [7] proved (7.39) assuming the validity of the Riemann hypothesis.

Conjecture 7.15. For n � 4, we have Φ(n) = 1. Hence, ωn is not a square.
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