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Abstract. We prove the existence of a Landen-type transformation for the

integral of a rational function. The convergence of its iterates is established.

1. Introduction

The transformation theory of elliptic integrals was initiated by Landen in [5, 4],
wherein he proved the invariance of the function

G(a, b) :=
∫ π/2

0

d θ√
a2 cos2 θ + b2 sin2 θ

(1.1)

under the transformation

a1 = (a+ b)/2 b1 =
√
ab,(1.2)

i.e. that

G(a1, b1) = G(a, b).(1.3)

Gauss [3] rediscovered this invariance while numerically calculating the length of a
lemniscate. An elegant proof of (1.3) is given by Newman in [7]. Here, the sub-
stitution x = b tan θ converts 2G(a, b) into the integral of

[
(a2 + x2)(b2 + x2)

]−1/2

over R; the change of variables t = (x− ab/x)/2 completes the proof.
The Gauss-Landen transformation can be iterated to produce a double sequence

(an, bn) such that 0 ≤ an − bn < 2−n. It follows that an and bn converge to
a common limit, the so-called arithmetic-geometric mean of a and b, denoted by
AGM(a, b). Passing to the limit in G(a, b) = G(an, bn) produces

π

2AGM(a, b)
=

∫ π/2

0

d θ√
a2 cos2 θ + b2 sin2 θ

.(1.4)

The reader is referred to [2] and [6] for details.
In this paper we develop a rational Landen transformation. These are transfor-

mations analogous to (1.3) that preserve the integral of a rational function over the
positive real line. We have produced such transformations where the integrand is
any even rational function. Here we present the details for degree 6.

Define

U6(a, b; c, d, e) :=
∫ ∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
dx.(1.5)
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Then our main result is:

Theorem 1.1. Let a0, b0, c0, d0, e0 ∈ R+ and define

an+1 =
anbn + 5an + 5bn + 9

(an + bn + 2)4/3
(1.6)

bn+1 =
an + bn + 6

(an + bn + 2)2/3

cn+1 =
cn + dn + en

(an + bn + 2)2/3

dn+1 =
(bn + 3)cn + 2dn + (an + 3)en

an + bn + 2

en+1 =
cn + en

(an + bn + 2)1/3
.

Then U6 is invariant under this transformation, i.e.

U6(an, bn; cn, dn, en) = U6(a0, b0; c0, d0, e0).(1.7)

Moreover, (an, bn) → (3, 3) and there exists a number L such that (cn, dn, en) →
(1, 2, 1)L. Passing to the limit in (1.7) produces

L =
2
π

∫ ∞
0

c0x
4 + d0x

2 + e0
x6 + a0x4 + b0x2 + 1

dx.(1.8)

The invariance of U6 under the transformation (1.6) is shown in Section 2, and the
convergence of the sequence (an, bn, cn, dn, en) is established in Section 4.

There exist similar higher-order Landen transformations when the integrand is
a rational function of any even degree. For example:

Theorem 1.2. Let a0, b0, c0, d0, e0, f0, g0 be positive real numbers, and define

an+1 =
bn(an + cn) + 4ancn + 10(an + cn) + 8(bn + 2)

(an + bn + cn + 2)3/2

bn+1 =
ancn + 6(an + cn) + 2(bn + 10)

an + bn + cn + 2

cn+1 =
an + cn + 8

(an + bn + cn + 2)1/2

dn+1 =
dn + en + fn + gn

(an + bn + cn + 2)3/4

en+1 =
gn(3an + bn + 6) + fn(an + 4) + en(cn + 4) + dn(3cn + bn + 6)

(an + bn + cn + 2)5/4

fn+1 =
gn(an + 5) + fn + en + dn(cn + 5)

(an + bn + cn + 2)3/4

gn+1 =
gn + dn

(an + bn + cn + 2)1/4
.

Then

U8(a, b, c; d, e, f, g) :=
∫ ∞

0

dx6 + ex4 + fx2 + g

x8 + ax6 + bx4 + cx2 + 1
dx(1.9)

is invariant under this transformation.
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Numerical calculations show that (an, bn, cn) → (4, 6, 4) and that (dn, en, fn, gn) →
(1, 3, 3, 1)L, with similar patterns involving binomial coefficients for higher-order
cases.

The case a = b in the integral U6 deserves special attention. Here

x6 + ax4 + ax2 + 1 = (x2 + 1)(x4 + (a− 1)x2 + 1)

so the integral can be evaluated by partial fractions. From (1.6) define the map

Φ6(a, b) =

(
ab+ 5a+ 5b+ 9

(a+ b+ 2)4/3
,

a+ b+ 6

(a+ b+ 2)2/3

)
that transforms (a, b) to (a1, b1). Then the preimages of the diagonal ∆ = {(a, b) ∈
R+ : a = b} under Φ6 form a sequence of real algebraic curves Xn = Φ−n

6 (∆)
containing the point (3, 3). The first curve X1 is discussed in Section 3; its defining
equation, derived from a1 = b1, is

(ab+ 5a+ 5b+ 9)3 = (a+ b+ 2)2(a+ b+ 6)3,(1.10)

so that (3, 3) is a cusp. The curves Xn correspond to the points in the first quadrant
for which the integral U6 can be evaluated in a finite number of steps without
computing the poles of the integrand. The complexity of the curves Xn increases
dramatically with n. For example, X2 is of degree 90 with leading term

T2(x, y) = 2121335(x− y)18
[
−163(x4 + y4) + 668xy(x2 + y2)− 1074x2y2

]
when written with coordinates x = a− 3 and y = b− 3 centered at the cusp.

2. The transformation of U6

A polynomial Pd(x) of degree d is called symmetric if Pd(1/x) = x−dP (x). A
symmetric polynomial Pd(x) is said to be normalized if it is monic. For example,
the normalized polynomial of degree 6 is P6(x) = x6 + a(x4 + x2) + 1. Similarly,
P12(x) = (x12 + 1) + α3(x10 + x2) + α2(x8 + x4) + 2α1x

6.
The first step in the derivation of the transformation (1.6) is to symmetrize the

denominator of the integrand, producing an integral in which the degree of the de-
nominator is double that of the original. We then employ a sequence of elementary
substitutions to transform the new integral back to one with denominator the same
degree as the original. The explicit formulae (1.6) can be iterated; the convergence
of the sequence (an, bn, cn, dn, en) is discussed in Section 4.

Proposition 2.1. Let R4(x) = cx4 +dx2 +e,Q6(x) = x6 +ax4 +bx2 +1, R10(x) =
R4(x)(x6 + bx4 + ax2 + 1), and let P12(x) be the normalized polynomial of degree
12 with parameters α1 = 1

2 (2 + a2 + b2), α2 = a+ b+ ab, and α3 = a+ b. Then∫ ∞
0

R4(x)
Q6(x)

dx =
∫ ∞

0

R10(x)
P12(x)

dx.(2.1)

Proof. Observe that P12(x) = x6Q6(x)Q6(1/x) and R10(x) = x6R4(x)Q6(1/x).
�

Now transform the integral (2.1) using the change of variables x = tan θ to
produce

U6 =
∫ π/2

0

∑5
k=0 rk cosk 2θ∑3

k=0 s2k cos2k 2θ
2 dθ,



4 GEORGE BOROS AND VICTOR H. MOLL

where r0, · · · , r5 and s0, · · · , s6 are functions of the parameters a, · · · , e. For ex-
ample, r0 = 2c+ ac+ bc+ 2d+ ad+ bd+ 2e+ ae+ be, with similar expressions for
the rest of them. Observe that the denominator is an even function of cosine, so
the odd powers in the numerator have vanishing integral. Therefore, with ψ = 2θ,
we have

U6 = 2
∫ π/2

0

r4 cos4 ψ + r2 cos2 ψ + r0
s6 cos6 ψ + s4 cos4 ψ + s2 cos2 ψ + s0

dψ.

Letting θ = 2ψ, we obtain

U6 =
∫ π

0

t2 cos2 θ + t1 cos θ + t0
u3 cos3 θ + u2 cos2 θ + u1 cos θ + u0

dθ,

where t2, · · · , t0 and u3, · · · , u0 are again functions of the parameters. Finally, the
change of variables y = tan(θ/2) yields

U6 =
∫ ∞

0

v4y
4 + v2y

2 + v0
w6y6 + w4y4 + w2y2 + w0

dy,

with v4, · · · , v0 and w6, · · · , w0 dependent upon a, · · · , e. The last step in the proof
of (1.6) is to factor out w0 and scale y to produce a monic polynomial.

3. A sequence of real algebraic curves

In the previous section we showed that the integral

U6(a, b; c, d, e) =
∫ ∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
dx(3.1)

can be tranformed into a new integral of the same type with denominator

x6 +
ab+ 5a+ 5b+ 9

(a+ b+ 2)4/3
x4 +

a+ b+ 6

(a+ b+ 2)2/3
x2 + 1.

If the denominator of the transformed integral is symmetric, it factors and so the
integral can be evaluated by partial fractions. We therefore have:

Proposition 3.1. Suppose (a, b) is a point in R2
+ such that Φ(i)

6 (a, b) is on the
diagonal ∆ = {(x, y) ∈ R2

+ : x = y} for some integer i. Then

U6(a, b; c, d, e) =
∫ ∞

0

cx4 + dx2 + 1
x6 + ax4 + bx2 + 1

dx

can be evaluated in a finite number of steps.

Note 1. The curve X1 := Φ−1
6 (∆) is a real algebraic curve containing the point

(3, 3). The equation for X1 is

(ab+ 5a+ 5b+ 9)3 = (a+ b+ 2)2(a+ b+ 6)3,(3.2)

which follows directly from a1 = b1. When written with coordinates x = a − 3
and y = b − 3, the leading term of X1 is T1(x, y) = −1728(x − y)2, so the point
(x, y) = (0, 0) corresponding to (a, b) = (3, 3) is a cusp.



A RATIONAL LANDEN TRANSFORMATION. THE CASE OF DEGREE SIX. 5

Proposition 3.2. The curve X1 is parametrized by

a(t) = t−2
(
t5 − t4 + 2t3 − t2 + t+ 1

)
(3.3)

b(t) = t−3
(
t5 + t4 − t3 + 2t2 − t+ 1

)
.

Proof. Let p = ab+ 5a+ 5b+ 9, q = a+ b+ 6 and r = a+ b+ 2. Then (3.2) can be
written as p = qR2 with R3 = r. Thus a+ b = R3−2 and ab = R5−5R3 +4R2 +1,
so that

a2 − (R3 − 2)a+ (R5 − 5R3 + 4R2 + 1) = 0.(3.4)

The discriminant of (3.4) is [TR(R− 2)]2 with T =
√
R2 − 4, and the equation

T 2 = R2 − 4 can be parametrized by R(t) = t + t−1 and T (t) = t − t−1. The
expressions for a and b in terms of t now follow from solving (3.4).

�

Note 2. The parametrization of X1 yields the factorization

x6 + ax4 + bx2 + 1 = (1 + t2x2)(t−2x4 + t−3(1 + t2)(1− t+ t2)x2 + 1)

for (a, b) ∈ X1, and the integral U6 can then be evaluated by partial fractions. The
determination of the parameter t from (3.3) for given a and b is, in general, not a
solvable problem.

Note 3. The points on X1 with rational coordinates are obtained from (3.3) with
t ∈ Q. For example, a(1) = b(1) = 3 produces the cusp. This point is fixed by the
map Φ6, so it is contained in all the curves Xi = Φ−i

6 (∆).

Note 4. The curves Xn do not exist in the case of an integrand of degree 8 since the
equation a1 = c1 in Theorem 1.2 yields a = c. Thus the transformation of degree 8
cannot be employed to produce symmetric integrands from non-symmetric ones.

4. Analysis of convergence

In this section we discuss the convergence of the recurrence (1.6). We first prove
that (an, bn) converges to (3, 3), and then that (cn, dn, en) converges to limits in
proportion to (1, 2, 1).

Theorem 4.1. Let a0 ≥ 0 and b0 ≥ 0. Then the sequence (an, bn) defined in (1.6)
converges to (3, 3).

Proof. It suffices to prove that

(a1 − 3)2 + (b1 − 3)2 ≤ 1
2
[
(a0 − 3)2 + (b0 − 3)2

]
,(4.1)

since iterating this inequality produces[
(an − 3)2 + (bn − 3)2

]
≤ 2−n

[
(a0 − 3)2 + (b0 − 3)2

]
and we then have geometric convergence to (3, 3).

The inequality (4.1) is equivalent to

f(a,b) = (a+b+2)8/3(a2+b2−6a−6b−18)+2(a+b+2)4/3(4ab+18a+18b+18−a2−b2)+

+2(6a3+6b3+8a2b+8ab2+35a2+35b2−a2b2+78a+78b+52ab+63)≥0,
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and we need to prove that f(a, b) has an absolute minimum of 0 at (3, 3). Note
that f(a, b) = f(b, a), so we may restrict the analysis to the region

Ω = {(a, b) ∈ R2
+ : a ≥ b}.(4.2)

Introduce the new variables x = (a + b + 2)1/3 and y = ab, and write h(x, y) for
f(a, b). The region Ω is then transformed into

Ω∗ = {(x, y) ∈ R2
+ : x ≥ 3

√
2 and 0 ≤ y ≤

(
1− x3/2

)2},
and in terms of the new variables, we need to prove that

h(x, y) = x14 − 10x11 − 2x10 + 12x9 − 2x8(y + 1) + 44x7 −
−2x6 + 4x4(3y − 11)− 20x3(y − 1)− 2(y − 1)2 ≥ 0

for (x, y) ∈ Ω∗. �

Lemma 4.2. The function h has no critical points in the interior of Ω∗.

Proof. We have

hx(x, y) = 14x13 − 110x10 − 20x9 + 108x8 − 16x7(y + 1)−
−308x6 − 12x5 + 16x3(3y − 11)− 60x2(y − 1),

hy(x, y) = −2(2y + x8 − 6x4 + 10x3 − 2).

Eliminating y from hx(x, y) = 0, hy(x, y) = 0 yields 2x3g(x) = 0, where

g(x) = 4x12 + 7x10 − 36x8 − 10x6 + 54x5 + 56x4 − 56x3 + 144x2 − 64.

The function g has no roots for x ≥ 1 (in particular for x ≥ 3
√

2), which can
immediately be seen by expanding g in terms of x− 1:

g(x) = 4(x− 1)12 + 48(x− 1)11 + 271(x− 1)10 + 950(x− 1)9 +
+2259(x− 1)8 + 3720(x− 1)7 + 4148(x− 1)6 + 2910(x− 1)5 +
+1106(x− 1)4 + 212(x− 1)3 + 273(x− 1)2 + 384(x− 1) + 99.

�

Lemma 4.3. The minimum value of h is 0 and occurs at x = 2.

Proof. Along the line y = 0, x ≥ 3
√

2, we have

h(x, 0) = x14 − 10x11 − 2x10 + 12x9 − 2x8 + 44x7 − 2x6 − 44x4 + 20x3 − 2,

and expanding in powers of x− 1 we obtain

h(x,0) = (x−1)14+14(x−1)13+91(x−1)12+354(x−1)11+889(x−1)10+

+1444(x−1)9+1369(x−1)8+352(x−1)7−779(x−1)6−810(x−1)5+

+119(x−1)4+714(x−1)3+517(x−1)2+156(x−1)+15.

Although there are two terms with negative coefficients in this expansion, it is easy
to majorize each of them by a higher-power term so that h(x, 0) ≥ 15. Along the
curve y = (1− x3/2)2, x ≥ 3

√
2, we have

h(x,(1−x3/2)2) = 1
8 x4(x−2)2×(4(x−1)8+48(x−1)7+271(x−1)6+902(x−1)5+

+1905(x−1)4+2628(x−1)3+2289(x−1)2+1062(x−1)+107),

which has an absolute minimum of 0 at x = 2 as claimed. �
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This completes the proof of Theorem 4.1.

Theorem 4.4. Let a0, b0, c0, d0, e0 be nonnegative real numbers with c0d0e0 > 0.
Then the sequence (cn, dn, en) defined in (1.6) converges to a limit (c, d, e) that
satisfies c = e and d = 2c.

Proof. Let An = (an+bn+2)1/3, and define ε1 = An−2, ε2 = A2
n−4, ε3 = an−3,

and ε4 = bn− 3. Observe that εi can be of any sign and that εi → 0 as n→∞. �

Lemma 4.5. The sequences cn, dn, en are bounded from above.

Proof. The identity

I :=
∫ ∞

0

c0x
4 + d0x

2 + e0
x6 + a0x4 + b0x2 + 1

dx =
∫ ∞

0

cnx
4 + dnx

2 + en

x6 + anx4 + bnx2 + 1
dx

(4.3)

shows that

I ≥ cn

∫ ∞
0

x4

x6 + anx4 + bnx2 + 1
dx,

and the integral on the right-hand side is bounded from below because an and bn
converge to 3. Thus cn is bounded from above, and similarly, dn, en are bounded
from above. �

Lemma 4.6. There exists δ > 0 such that 6cn + 2dn + 6en > δ.

Proof. Let r(x) = x6 + anx
4 + bnx

2 + 1 and define

α := max
n

{∫ ∞
0

x4 dx

r(x)
,

∫ ∞
0

x2 dx

r(x)
,

∫ ∞
0

dx

r(x)

}
.

Then α > 0 since an, bn → 3, and (4.3) yields I < 2α(6cn + 2dn + 6en). �

Lemma 4.7. We have lim
n→∞

cn+en

dn
= 1.

Proof. Start with

cn+1 + en+1

dn+1
=

An(cn + dn + en) +A2
n(cn + en)

(bn + 3)cn + 2dn + (an + 3)en

=
1

1 + (ε4cn + ε3en)/(6cn + 2dn + 6en)
+

+
ε1(cn + dn + en) + ε2(cn + en)
(6 + ε4)cn + 2dn + (6 + ε3)en

.

Now, since cn, dn, en are bounded from above,
|ε4cn + ε3en|

6cn + 2dn + 6en
< (|ε3|+ |ε4|)M/δ,(4.4)

where M = max{cn, dn, en}.
Assuming (without loss of generality) that ε3, ε4 > −1, we thus have

|ε1(cn + dn + en) + ε2(cn + en)|
|(6 + ε4)cn + 2dn + (6 + ε3)en)|

<
|ε1(cn + dn + en) + ε2(cn + dn)|

5cn + 2dn + 5en

< (|ε1|+ |ε2|)×
6M
δ
.



8 GEORGE BOROS AND VICTOR H. MOLL

�

Lemma 4.8. We also have lim
n→∞

cn

en
= 1 and lim

n→∞
dn

en
= 2.

Proof. Since

cn+1

en+1
=

cn + dn + en

(2 + ε1)(cn + en)
=

1
2 + ε1

+
dn

(2 + ε1)(cn + en)
,

the conclusion follows from Lemma 4.7. �

It remains to check that the sequence cn converges, from which the convergence
of dn and en follow. Observe that

I =
∫ ∞

0

cnx
4 + dnx

2 + en

x6 + anx4 + bnx2 + 1
dx

is independent of n. Thus

cn = I ×
(∫ ∞

0

x4 + dnx
2/cn + en/cn

x6 + anx4 + bnx2 + 1
dx

)−1

converges in view of the lemmas established above. This completes the proof of
Theorem 4.4.

Note 5. Numerical calculations with the scheme (1.6) show quadratic convergence.
For example, the sequence (an, bn, cn, dn, en) for the evaluation of∫ ∞

0

45x4 + 25000x2 + 1230
x6 + x4 + 3000x2 + 1

dx

is shown below:
n an bn cn dn en

0 1 3000 45 25000 1230
1 .415786 14.4465 126.233 63.2884 88.3741
2 2.06562 3.17262 42.2607 156.015 83.6896
3 2.98142 3.00338 75.3541 137.717 65.1111
4 2.99999 3. 69.6338 139.925 70.2771
5 3. 3. 69.9589 139.914 69.9555
6 3. 3. 69.9572 139.914 69.9572
7 3. 3. 69.9572 139.914 69.9572

Therefore L ∼ 69.9572 and∫ ∞
0

45x4 + 25000x2 + 1230
x6 + x4 + 3000x2 + 1

dx ∼ 69.9572× π

2
∼ 109.889.

5. Conclusions

We have produced a Landen transformation for the integral of a rational function
and proved convergence of its iterates.
The bibliography also includes [1].
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