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Abstract. We prove that if P (x) is a polynomial with nonnegative nonde-

creasing coefficients and n is a positive integer, then P (x + n) is unimodal.

Applications and open problems are presented.

1. Introduction

A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there
exists an index 0 ≤ m∗ ≤ m, called the mode of the sequence, such that dj in-
creases up to j = m∗ and decreases from then on, that is, d0 ≤ d1 ≤ · · · ≤ dm∗ and
dm∗ ≥ dm∗+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of
coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra. The
reader is referred to [3] and [4] for surveys of the diverse techniques employed to
prove that specific families of polynomials are unimodal.

A sequence of positive real numbers {d0, d1, · · · , dm} is said to be logarithmic
concave (or log concave for short) if dj+1dj−1 ≤ d2

j for 1 ≤ j ≤ m− 1. It is easy to
see that if a sequence is log concave then it is unimodal [5]. A sufficient condition
for log concavity of a polynomial is given by the location of its zeros: if all the
zeros of a polynomial are real and negative, then it is log concave and therefore
unimodal [5]. A simple criterion for unimodality was established in [1]: if aj is a
nondecreasing sequence of positive real numbers, then

P (x + 1) =
m∑

j=0

aj(x + 1)j(1.1)

=
m∑

j=0

dj(m)xj(1.2)

is unimodal. This criterion is reminiscent of Brenti’s criterion for log concavity
[3]. A sequence of real numbers is said to have no internal zeros if di, dk 6= 0 and
i < j < k imply dj 6= 0. Brenti’s criterion states that if P (x) is a log concave
polynomial with nonnegative coefficients and with no internal zeros, then P (x + 1)
is log concave.
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In this paper we first prove that under the same conditions of [1] the polynomial
P (x + n) is unimodal for any n ∈ N, the set of positive integers. We also charac-
terize the unimodal sequences {dj} that appear in [1] and discuss the behavior of
the coefficients of P (x + 1) for a unimodal polynomial P (x). Numerical evidence
suggests that the unimodality result is true for n real and positive. This remains
to be investigated.

2. The extension

In this section we prove an extension of the main result in [1]. We start by
establishing an elementary inequality.

Lemma 2.1. Let m, n ∈ N and m∗ := b m
n+1c. Then (n+1)m∗ ≤ m ≤ (n+1)m∗+n.

Proof This follows directly from m
n+1 − 1 < m∗ ≤ m

n+1 .

Theorem 2.2. Let 0 ≤ a0 ≤ a1 · · · ≤ am be a sequence of real numbers and n ∈ N,
and consider the polynomial

P (x) = a0 + a1x + a2x
2 + · · ·+ amxm.(2.1)

Then the polynomial P (x + n) is unimodal with mode m∗ = b m
n+1c.

We now restate Theorem 2.2 in terms of the coefficients of P .

Theorem 2.3. Let 0 ≤ a0 ≤ a1 · · · ≤ am be a sequence of real numbers and n ∈ N.
Then the sequence

qj := qj(m,n) =
m∑

k=j

ak

(
k

j

)
nk−j(2.2)

is unimodal with mode m∗ = b m
n+1c.

Proof The coefficients qj(m) in (1.2) are given by

qj(m) =
m∑

k=j

ak

(
k

j

)
nk−j(2.3)

so that Theorem 2.3 follows from Theorem 2.2. Now

(i + 1)(qi+1(m)− qi(m)) ≤
m∑

k=i

ak

(
k

i

)
nk−i−1 [k − (n + 1)i− n] .(2.4)

Suppose m∗ ≤ i ≤ m− 1. Then

(2.5) k − (n + 1)i− n ≤ m− (n + 1)i− n ≤ m− (n + 1)m∗ − n ≤ 0,

where we have employed the Lemma in the last step. We conclude that every term
in the sum (2.4) is nonpositive. Thus for m∗ ≤ i ≤ m−1 we have qi+1(m) ≤ qi(m).

Now assume 0 ≤ i ≤ m∗ − 1. We show that qi+1(m) ≥ qi(m). Observe that in
this case the sum (2.4) contains terms of both signs, so the positivity of the sum is
not apriori clear. Consider
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(i + 1) (qi+1(m)− qi(m)) =
m∑

k=(n+1)i+n+1

ak

(
k

i

)
nk−i−1 [k − (n + 1)i− n]

−
(n+1)i+n−1∑

k=i

ak

(
k

i

)
nk−i−1 [−k + (n + 1)i + n]

:= T2 − T1.(2.6)

Observe that

T1 =
(n+1)i+n−1∑

k=i

ak

(
k

i

)
nk−i−1 [−k + (n + 1)i + n]

≤ a(n+1)(i+1)

(n+1)i+n−1∑
k=i

(
k

i

)
n(n+1)i+n−1−i−1 [−k + (n + 1)i + n]

≤ a(n+1)(i+1)n
(i+1)n−2

(n+1)i+n−1∑
k=i

(
k

i

)
[−k + (n + 1)i + n] .

The monotonicity of the coefficients of P was used in the first step.

The last sum can be evaluated (e.g. symbolically) as
(n+1)i+n−1∑

k=i

(
k

i

)
[−k + (n + 1)i + n] =

( (n + 1)i + n + 1)!
(i + 2)! (ni + n− 1)!

,

so that

T1 ≤ a(n+1)(i+1)n
(i+1)n × ((n + 1)i + n + 1)!

n2(i + 2)!(ni + n− 1)!

≤ a(n+1)(i+1)n
(i+1)n × ((n + 1)i + n + 1)!

(ni + 2n)(ni + n) i! (ni + n− 1)!
.

Now observe that
((n + 1)i + n + 1)!

(ni + 2n)(ni + n) i! (ni + n− 1)!
≤

(
(n + 1)(i + 1)

i

)
.

The inequality T1 ≤ T2 now follows since the upper bound for T1 established above
is the first term in the sum defining T2.

Corollary 2.4. Let 0 ≤ a0 ≤ a1 · · · ≤ am be a sequence of real numbers, n ∈ N,
and

P (x) = a0 + a1x + a2x
2 + · · ·+ amxm.

Then P (x + n) has decreasing coefficients for n ≥ m.

Example 2.5. Let 2 < a1 < · · · < ap and r1, · · · , rp be two sequences of positive
integers. Then the sequence

qj :=
m∑

k=j

nk−j

(
a1m

kr1

) (
a2m

kr2

)
· · ·

(
apm

krp

)(
k

j

)
, 0 ≤ j ≤ m

is unimodal.
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3. The converse of the original criterion

The original criterion for unimodality states that if P (x) has positive nondecreas-
ing coefficients, then P (x + 1) is unimodal. In this section we discuss the following
inverse question:

Given a unimodal sequence {dj : 0 ≤ j ≤ m}, is there a polynomial P (x) =
a0 + a1x + · · ·+ amxm with nonnegative nondecreasing coefficients such that

P (x + 1) =
m∑

j=0

djx
j(3.1)

We begin by expressing the conditions on {aj} that guaranteed unimodality of
P (x + 1) in terms of the coefficients {dj}. Recall that

dj =
m∑

k=j

ak

(
k

j

)
(3.2)

and

aj =
m∑

k=j

(−1)k−jdk

(
k

j

)
.(3.3)

Lemma 3.1. Let 0 ≤ j ≤ m. Then

aj ≥ 0 ⇐⇒ dj ≥
m∑

k=j+1

(−1)k−j+1dk

(
k

j

)
.(3.4)

Proof This follows directly from (3.3).

Lemma 3.2. Let 0 ≤ j ≤ m− 1. Then

aj ≤ aj+1 ⇐⇒ dj ≤
m∑

k=j+1

(−1)k−j+1dk

(
k + 1
j + 1

)
.

Proof This follows directly from the identity

aj+1 − aj =
m∑

k=j+1

(−1)k−j+1dk

(
k + 1
j + 1

)
− dj .

We now combine the previous two lemmas to produce a criterion for unimodality.

Theorem 3.3. Let Q(x) = d0 +d1x+ · · ·+dmxm and assume the coefficients {dj}
satisfy the inequalities

m∑
k=j+1

(−1)k−j+1dk

(
k

j

)
≤ dj ≤

m∑
k=j+1

(−1)k−j+1dk

(
k + 1
j + 1

)
.(3.5)

Then Q(x) is a unimodal polynomial for which P (x) := Q(x− 1) has positive and
nondecreasing coefficients. Furthermore, for any n ∈ N, Q(x + n) is unimodal with
mode b m

n+2c.
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Proof The first part follows from the previous two lemmas. For the second part,
Theorem 3.3 shows that Q(x − 1) has nonnegative, nondecreasing coefficients, so
Theorem 2.2 yields the result.

Note. The inequality (3.5) is always consistent. The difference between the upper
and lower bound is

m∑
k=j+1

(−1)k−j+1dk

(
k + 1
j + 1

)
−

m∑
k=j+1

(−1)k−j+1dk

(
k

j

)

=
m∑

k=j+1

(−1)k−j+1dk

(
k

j + 1

)
= aj+1,

so the difference is always nonnegative.

Note. It would be interesting to describe the precise range of the map (a0, a1, · · · , am) 7→
(d0, d1, · · · , dm). This map is linear, so the image of the set 0 ≤ a0 ≤ · · · ≤ am is a
polyhedral cone. In this paper we state one simple restriction on this image.

Proposition 3.4. Let aj ≥ 0. Then dj ≥ dj+1 for j ≥ bm/2c.

Proof This follows directly from

dj − dj+1 =
m∑

k=j

ak

(
k

j

)
−

m∑
k=j+1

ak

(
k

j + 1

)

= aj +
m∑

k=j+1

ak
k! (2j + 1− k)
(j + 1)!(k − j)!

since every term in the last sum is nonnegative.

4. A criterion for log concavity

Any nonnegative differentiable function f that satisfies f(0) = f(m) = 0 and
f ′′(x) ≤ 0 yields the unimodal sequence {f(j) : 0 ≤ j ≤ m}. The next theorem
shows that these sequences are always log concave.

Proposition 4.1. Let P (x) =
∑m

k=0 ckxk be a unimodal polynomial with mode n.
Assume in addition that cj+1 − 2cj + cj−1 ≤ 0. Then P (x) is log concave.

Proof Let j < n, so that cj ≥ cj−1. The condition on cj can be written as
cj − cj−1 ≥ cj+1 − cj , so that

cjcj − cjcj−1 ≥ cj+1cj−1 − cjcj−1,

and thus the log concavity condition holds. The case j ≥ n is similar.
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5. The motivating example

The original criterion for unimodality in [1] was developed in our study of the
coefficients dl(m) of the polynomial

Pm(a) =
1
π

2m+3/2(a + 1)m+1/2

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
(5.1)

considered in [2]. These coefficients are given explicitly by

dl(m) = 2−2m
m∑

k=l

2k

(
2m− 2k

m− k

)(
m + k

m

)(
k

l

)
,(5.2)

and we have conjectured that {dl(m)}m
l=0 forms a log concave sequence. Unfortu-

nately Proposition 4.1 does not settle this question. For example, for m = 15 the
sequence of signs in dj+1(15)− 2dj(15) + dj−1(15), for 1 ≤ j ≤ 14, is

sign(15) = {+1, +1, +1, +1, +1, −1, −1, −1, −1, +1, +1, +1, +1, +1},
so the condition fails.
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