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The integrals in Gradshteyn and Ryzhik.
Part 6: The beta function

Victor H. Moll

ABSTRACT. We present a systematic derivation of some definite integrals in the
classical table of Gradshteyn and Ryzhik that can be reduced to the beta function.

1. Introduction

The table of integrals [2] contains some evaluations that can be derived by ele-
mentary means from the beta function, defined by

(1.1) B(a,b) = /0 2711 — z)’ 7 da.

The convergence of the integral in (1.1) requires a, b > 0. This definition appears as
3.191.3 in [2].

Our goal is to present in a systematic manner, the evaluations appearing in the
classical table of Gradshteyn and Ryzhik [2], that involve this function. In this part, we
restrict to algebraic integrands leaving the trigonometric forms for a future publication.
This paper complements [3] that dealt with the gamma function defined by

(1.2) I'(a):= / e dx.
0

These functions are related by the functional equation

['(a) I'(b)

I'(a+0b)

A proof of this identity can be found in [1].

(1.3) B(a,b) =

The special values T'(n) = (n — 1)! and
V7 (2n)!

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals, beta function.
The author wishes to thank Luis Medina for a careful reading of an earlier version of the paper.
The partial support of NSF-DMS 0409968 is also acknowledged.
49



50 VICTOR H. MOLL

for n € N, will be used to simplify the values of the integrals presented here. Proofs
of these formulas can be found in [3] as well as in Proposition 2.1 below.
The other property that will be employed frequently is

(1.5) I(a)T(1—a) = —

sinma’

The reader will find in [1] a proof based on the product representation of these func-
tions. A challenging problem is to produce a proof that only employs changes of
variables.

The table [2] contains some direct values:

(1.6) /Ol(xpdx _ b7

1—z)» sinpw

is 3.192.1 and is evaluated by identifying it as B(p + 1,1 — p). Formula 3.192.2 is

aP dx 7r
1.7 = —
(17) /0 (1 —z)ptl sin pmr
has the value B(p+ 1, —p) =T'(p + 1)I'(—p). Next, 3.192.3 is
1

(1—2xz)P ™
1.8 ——dr =—
(18) /0 gt 0 sin pmr

and the change of variables t = 1/x in 3.192.4 produces

e’} 1
(1.9) / (x—1)p*1/2d—x :/ TPV —)p 2 gt
1

z 0
and this is
1
(1.10) B(z-patp)=TG-2)TG+r)= 0
as stated in [2].
Let b= £ in (1.1) to obtain
1, .a-1
r

(1.11) [ = - pad) - Ta) v

0 \/1 — X r (a + 5)

The special values a = n+1 and a = n—i—% appear as 3.226.1 and 3.226.2, respectively.

2. Elementary properties

Many of the properties of the beta function can be established by simple changes
of variables. For example, letting y = 1 — 2 in (1.1) yields the symmetry

(2.1) B(a,b) = B(b,a).



THE BETA FUNCTION 51

It should not be surprising that a clever change of variables might lead to a
beautiful result. This is illustrated following Serret [4]. Start with

1
B(a,a) = /O(x—a:Q)afldx
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The natural change of variables v = % — x yields

1/2
(2.2) B(a,a) = 2/ (L =) do.
0
The next step is now clear: let s = 4v2 to produce
(2.3) B(a,a) =2'""%*B (a,3).
The functional equation (1.3) converts this identity into Legendre’s original form:

Proposition 2.1. The gamma function satisfies

(2.4) I(a+3)= %21@

In particular, for a = n € N, this yields (1.4).

3. Elementary changes of variables

The integral (1.1) defining the beta function can be transformed by changes of
variables. For example, the new variable z = ¢/u, reduces (1.1) to

(3.1) / t7 N u — )"V dt = w71 B(a, b),
0

that appears as 3.191.1 in [2]. The effect of this change of variables is to express the
beta function as an integral over a finite interval. Observe that the integrand vanishes
at both end points. Similarly, the change ¢t = (v — u)x + v maps the interval [0, 1] to
[u,v]. Tt yields

(3.2) /v(t —u)* o —t)"Vdt = (v —u)* TP B(a, b).

This is 3.196.3 in [2]. The special case u =0, v =n and a = v, b = n + 1 appears as
3.193 in [2] as

n b1 n ’rLVJrnTL!
(33) /Of” (n =) dx:y(y+1)(v+2)---(v+n)'

Several integrals in [2] can be obtained by a small variation of the definition. For
example, the integral

(3.4) /01(1 el g = 23 (1/a,b)
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can be obtained by the change of variables t = x®. This appears as 3.249.7 in [2] and
illustrates the fact that it not necessary for the integrand to vanish at both end points.
The special case a = 2 appears as 3.249.5:
1
(3.5) ‘/(1—x%“4dx:%B(;b):Z%‘%ﬂaw,
0
where the second identity follows from Legendre’s duplication formula (2.4).
The change of variables t = ¢z produces a scaled version:
¢ 1
(3.6) / (¢ =t dt = 2D+ B (1/a,b).
0 a
The special case a = 2 yields
¢ c
(3.7) / (=t~ tat =
0
The choice b =n + 3 appears as 3.249.2 in [2]:
¢ . on
3.8 2otz = T8 ()
(35) |- (Y
Similarly 3.251.1 in [2] is

! 1 c
. 11—z lde==-B(-,b).
(3.9) /Ox (1—2%) =~ (a’)

2b—1

B(1/2,b).

The change of variables t = 1/x converts (1.1) into
(3.10) / 1=o=b(t — 1)'=1 dt = B(a, b).
1
Letting t = 2P yields

(3.11) / gP=a==1 (gp _ 1)P71 gy — lB(a, b).
1 p

The special case v = b and = p(1 — a — b) is 3.251.3:

(3.12) / 2" (2P — 1) da = %B(l—u—u/p,l/).
1

4. Integrals over a half-line

The beta function can also be expressed as an integral over a half-line. The change
of variables t = z/(1 — ) maps [0, 1] onto [0, 00) and it produces from (1.1)

oo galgt
4.1 B(a,b) = —_—.
(4.1) (a,b) /0 (1+ t)atd
In particular, if a + b = 1, using (1.3) and (1.5), we obtain

oo pa—l g
(4.2) / S—
0

1+t sinma’
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This can be scaled to produce, for a > 0 and ¢ > 0,

oo a—1 d
(4.3) / ° T Tl fore>0
0 T+c sinma
that appears as 3.222.2 in [2]. In the case ¢ < 0 we have a singular integral. Define
b= —c> 0 and s = /b, so now we have to evaluate
oo La—1 d

(4.4) I= —b“—l/ =9

o 1—s
The integral is considered as a Cauchy principal value

1 a—1 00 a—1
s~ ds s~ ds

4.5 I=1 _ _.
(4.5) e o (1—s)l=e +/1 (1—s)t—e

Let y = 1/s in the second integral and evaluate them in terms of the beta function to
produce

. 1 I'(a I'l—a—c¢
(4.6) 1= lli%d‘(e) X < (F(a(+)e) - (F(l ) )> .
Use L’Hopital’s rule to evaluate and obtain
IM(a) T'(1-a)
I(a) I(a)
Using the relation I'(a)I'(1 — a) = mcosec ma, this reduces to 7 cot wa. Therefore we
have

(4.7) I=-—

oo .a—1 d

(4.8) / z S (—c)* ! fore<0

0 T+c tanma
The change of variables x = e¢~* produces, for ¢ < 0,

o eTHE dt
(4.9) [m E*ti—i—c = —mcot(pm) (—e)* L.
The special case ¢ = —1 appears as 3.313.1:
ekt

(4.10) /_DO % = 7 cot(um).

We now consider several examples in [2] that are direct consequences of (4.3) and
(4.8). In the first example, we combine (4.3) with the partial fraction decomposition

(4.11) 1 _ 1 1 1
: (x+a)(x+b) b—al\z+a z+b
leads to 3.223.1:
> xﬂ_l dx T
4.12 — p—1 _ bﬂ_l . .
( : /0 (x+b)(z+a) b—a (a )cosec(m)
Similarly,
1 1 b
(4.13) _ a+

t4+b z—a (a—x)(b+a)
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leads to 3.223.2:

> arldx ™
_ pn—1 p—1
(4.14) /0 IRy (b~ cosec(um) + a* ' cot(p))

using (4.3) and (4.8). The result 3.223.3:

00 .13”_1 dr au—l _ bu—l
4.1 — = - 7
(4.15) /0 (a—z)(b— ) m cot () b—a
follows from
1 1 1 1
4.1 = —_ .
(4.16) (a—x)(b—x) a—b(b—x a—x)
Finally, 3.224:
o) p—1 _ —
(4.17) / (x+ bzt dx __T a ba”’_l 4 € bc"’_l ,
o (z+a)xz+c¢) sin(ur) \a—-c c—a
follows from
r+b b—a 1 b—c 1

418 - _ .
(4.18) (z+a)(z+c¢) c—ax+a c—ax+c

We can now transform (4.1) to the interval [0, 1] by splitting [0, oo) as [0, 1] followed
by [1,00). In the second integral, we let ¢t = 1/s. The final result is

1ta_1+tb_1
4.1 B = —dt.
(4.19) @t = [ T

This formula, that appears as 3.216.1, makes it apparent that the beta function is
symmetric: B(a,b) = B(b,a). The change of variables s = 1/t converts (4.19) into
3.216.2:

e8] Sa71_|_8b71
4.2 B = —ds.
(4.20) @b = [ s

It is easy to introduce a parameter: let ¢ > 0 and consider the change of variables
t = cx in (4.1) to obtain

oo ge—ldy
4.21 ——— =¢ *B(a,b
( ) /0 (1 + cx)otd ¢ (a,b),

that appears as 3.194.3. We can now shift the lower limit of integration via t = x +u
to produce

(4.22) /Oo(t —w)Ht4+v)" " dt = (u+v)"’B(a,b),

where v = 1/¢ — u. This is 3.196.2, where v is denoted by 8. Now let b = ¢ —a in
the special case v = 0 to obtain

(4.23) / (t—w)* 't ¢dt =u""°Bla,c — a).

This appears as 3.191.2.



THE BETA FUNCTION 55

We now write (4.1) using the change of variables t = 2¢. Tt produces

o0 ac—1

(4.24) /0 (ch;Zb = %B(a,b).
The special case ¢ =2 and a =1+ /2, b =1 — p/2 produces 3.251.6 in the form
(4.25) /DO e e

o (1+22)2  4sinpr/2

Now let b =1 — a and choose a = p/c to obtain
oo p—1

(4.26) /0 x1p+ ;l(x = %B (%, c;p) = % cosec(mp/c).

This appears as 3.241.2 in [2].

Similar arguments establish 3.196.4:

(4.27) /loo (a_b;)lﬁ - —% cosec(vr) (b f a>y.

Indeed, the change of variables t = x — 1 yields

) dr o dt
(4.28) /1 m:/() [(a—b) —bt] t°

and scaling via the new variable z = bt/ (b — a) gives

(4.29) [ amemy—s (ﬁ)u/fufﬁ~

The result follows from (4.1) and the value

™

(4.30) Bv,1—v)=TWw)I'(1l-v) =

sinmy’
The same argument gives 3.196.5:

(4.31) /_100 (a_b;)lﬁ - % cosec(v) (a f b)y.

5. Some direct evaluations

There are many more integrals in [2] that can be evaluated in terms of the beta
function. For example, 3.221.1 states that

o] _ p—1 d
(5.1) / o du = m(a — b)P~* cosec mp.
o x—0b
To establish these identities, we assume that a > b to avoid the singularities. The
change of variables t = (z — a)/(a — b) yields

* (z—a)P~tdx _1/00 tP=Ldt
2 M (a—Db)P
(52) /a z—b (a=b)"" | ¢

and this integral appears in (4.2).
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Similarly, 3.221.2 states that

a _ p—l d
(5.3) / (axx)Tx = —7(b—a)?"! cosec Tp.

This is evaluated by the change of variables y = (a — z)/(b — a).

The table contains several evaluations that are elementary corollaries of (4.1).
Starting with

IMNa+1)T(b—a—1)
I'(b) 7

(5.4) /Ooo%:B(a—i—l,b—a—l):

we find the case a = p and b = 3 in 3.225.3:
/°° aPdr  T(p+1T(2-p) pl-—p)
o (

L+az)3 r(3) 2 sin(pm)’

using elementary properties of the gamma function.

(5.5)

The change of variables t = 1 + x converts (5.4) into

Fla+1)T(b—a—1)
r(b) '

(5.6) [msz(aH,b—a—n:

The special case a =p — 1 and b = 2 gives

0o _ 1\p—1 ™ -
(5.7) /1 w =I'(pI2-p)=01-plErl-p = 731(31@753))'

This appears as 3.225.1. Similarly, the case a =1 — p and b = 3 produces 3.225.2:

®@t—-1)tPdt TER-pT(l+p) 1 7w p(l —p)
) = =-—pl-pI'(pI~I'l-p) =—-—.
(5.8) /1 3 @) 5P(L =PI ~p) 3 sin(p)
6. Introducing parameters

It is often convenient to introduce free parameters in a definite integral. Starting
with (4.1), the change of variables ¢t = =2 yields

ettt
_ a,b
(6.1) B(a,b) = cu™v /0 7@ )t
This formula appears as 3.241.4 in [2] with the parameters
(6.2) azﬁ,bzn—kl—ﬁ,c:uu:q, and v = p,
v v

in the form

e (p)/ L(u/v) T(n+ 1 — /)
o (p+aqav)ntt  wprtl g [(n+1) '

This is a messy notation and it leaves the wrong impression that n should be an integer.
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e The special case v =c=1and b =p+ 1 — a produces

o el 1
: —  _—-_B 1—a).

This appears as 3.194.4 in [2], except that it is written in terms of binomial coefficients
as
0

(6.4) /Ooo % =l (a i 1) cosec(ra).

We prefer the notation in (6.3).

e The special case v =c =1 and b = 2 — a produces
* gemtdt 1

6.5 — = _—_B(a,2-a).
(65) | g = B2 =
Using (1.3) and (1.5) yields the form

et 1—
(6.6) / _d-ar

0

(1+wut)?2  wosinma’

This appears as 3.194.6 in [2].

e The special case u = v = 1 and ¢ = ¢, and choosing a = p/q and b = 2 — p/q yields
3.241.5 in the form

> p=1g _
(6.7) / T x2 _4a 2p . s .
o (L+a9) q* sin(rp/q)

e The special casec=1landa=m+1,b=n—m — % produces

< tmdt 1
(6.8) / T = =B(m+1,n—m-—1)
O (v4ut)"tz  umtly"TMT2
Using (1.3) and (1.4) this reduces to
6.9 > " dt _ m!n!(2n —2m — 2)!22mJr2 pm—n+1/2
(09 T o mo @ e
O (v+ut)""2

for m, n € N, with n > m. This appears as 3.194.7 in [2].
e The special case u =v =1 and b= % — a yields

oo tac—1
(6.10) / P _1p ().
0

Writing a = p/c we recover 3.248.1:

o p=lgt 1
6.11 —-B(2 1 _p)
( ) /0 /_]_—f—tc c (c 2 c)
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e Now replace v by v? in (6.1). Then, with u =1, a = %, ¢ =2, s0 that ac =1

and b=n — % we obtain
o dt 1
A2 = B(in—1).

(6.12) /0 (V2 + {2 221 (2,n 2)
This can be written as

> dt I'(n—-1/2
613 [ _ VAD(n—1/2)

o (2 +2)n 2T (n)v2n—1

that appears as 3.249.1 in [2].

e The special case v =1, c=2 and b= § —a in (6.1) yields

< -l 1
6.14 — = _—_B(a,%—a).
619 | e a0
Now a = 1/2 gives

e 1 v T2
6.15 14 ut) ™2t = ——_pB (1 no1y 3 )
(6:15) /0 (Ltut’) NN A Wt vy
It is curious that the table [2] contains 3.249.8 as the special case u = 1/(n — 1) of
this evaluation.

e We now put u=v =1and ¢ =21n (6.1). Then, withb=1—v—a and a = p/2,
we obtain 3.251.2:

< r=ldt 1 _/p 1
6.16 A > 3 (i, RS
(6.16) /0 A+ 2 (2’ v 2)

e We now consider the case ¢ =2 in (6.1):

o0 yZa—l gy 1
6.17 = Bl(a,b).
(6.17) A e = g Bl

The special case a = m + % andb=n—m+ % yields

/°° ?mdt D(m+1/2)T(n—m+1/2)
o (,U_|_ut2)n+1 - 2um+1/2vnfm+1/21“(n+1) )

and using (1.4) we obtain 3.251.4:
/°° t2m dt m(2m)!(2n — 2m)!
o (

(6.18)

(6.19)

v 4 ut2)ntl 220+l l(n — m)In! ymt1/2gn-m+1/2”

for n,m € N with n > m.
On the other hand, if we choose a = m + 1 and b = n — m we obtain 3.251.5:

(6.20) /Ooo( £t Tm+DTn—m)  mi(n—m—1)!

v+ ut2)ntl o ymtlyn—mI(n 4 1) 2plymtlygn-m
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Several evaluation in [2] come from the form
(6.21) /01 19971 — )Lt = %B(a, b),
obtained from (1.1) by the change of variables x = 9.

e The choice a =1+ p/q and b =1 — p/q produces

1
1

(6.22) / pra=l(1 _g9)~Plags = ~ (1 +Pq 2) — p_72r cosec (fﬂ) .

0 q q q q q

This appears as 3.251.8.
e The choice a = 1/p and b=1—1/p gives
1
1 1 1
(6.23) / 29?711 — 29" VPdy = =B (—, 1- —) = cosec (ﬁ> .
0 p q p
This appears as 3.251.9.

e The reader can now check that the choice a = p/q and b = 1 — p/q yields the
evaluation

1
1
(6.24) / PN (1—29)P/ldy = -B (2, 1— 2) — T cosec (E) .
0 q q q q q
This appears as 3.251.10.

e Puttingv=1and b=v —a in (6.1) we get

el 1
(6.25) / ——— = —B(a,v —a).
o (L+wute)r  cue

Now let a = r/c to obtain

< pr-lat 1 T T
6.26 = B(-,v—-).
(6.26) /0 (1 +ute)”  cur/c (c v c)

This appears as 3.251.11.

e We now choose b=1—1/¢g in (6.21) to obtain

1 jaqg—1

t9~t dt 1 1
6.27 ——=-Bla,1—-]|.
(6.27) 0o V1—-1te Q< (I>

Finally, writing a = ¢ — (m — 1)/q gives the form

1 —

te4a—™ dt 1 1 m 1
6.28 At _1p c+___,1__).
(6:25) ovql—t"Q<qq q
The special case ¢ = 2 produces

1 c—m 1 m
(6.29) u:13(0+;_m ;):F(Hi—?)ﬁ.
o VI—£2 ? 2022 (e+1-%)
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In particular, if c =n + 1 and m = 1 we obtain 3.248.2:

(6.30) Yentlgr o mnl o 222
' o Vi—2 2T(n+3/2) (2n+1)I
Similarly, ¢ = n and m = 0 yield 3.248.3:

6.31 Lot _oom @2n)! 7w [2n
(- ) 0 m_zm-ﬂ nl2 — 92nt1\ o )7

In the case ¢ = 3 we get

Lyge—magy 1 1 m 1
(6.32) i fngB(chg—E,l—g).
This includes 3.267.1 and 3.267.2 in [2]:
Y mat 2 T(n+3)
o VI8  3V/3I(E)I(n+1)
bdn=1 gt (n—1)IT(2)
o VI-B 3+

The latest edition of [2] has added our suggestion
et T Hr()

(6.33) o VI-13  30(n+1)

as 3.267.3.

7. The exponential scale

We now present examples of (1.1) written in terms of the exponential function.
The change of variables x = e~ in (1.1) yields

7.1 e*at 1— 6761& b—1 dt — lB g’b .
(7.1)
0 - -
This appears as 3.312.1 in [2]. On the other hand, if we let z = e~°" in (4.1) we get
o0 e*act dt 1
- /foo A g eyart — Pl@b):

This appears as 3.313.2 in [2]. The reader can now use the techniques described
above to verify

(7.3) /_Z%zaexp [b(u—g)} B(ap,v —ap),

that appears as 3.314. The choice b = 0, ¥ = 1 and relabelling parameters by a = 1/¢
and p = p yields 3.311.3:

X e Prdy 1
(7.4) / erdr_1p (2, - 2) = T eosec (_p) ,
R R q q q q
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using the identity B(z,1 — ) = wcosec(nz) in the last step. This is the form given in
the table.

The integral 3.311.9:

oo —ux d
(7.5) / Z+ e*f = b1 cosec(um)
can be evaluated via the change of variables t = ¢~* /b and (4.2) to produce
00 4pu—1
(7.6) = bt / e dt
, 1+t

8. Some logarithmic examples

The beta function appears in the evaluation of definite integrals involving loga-
rithms. For example, 4.273 states that

(8.1) /uv (lng)pi1 (1n£)q71 d% = B(p,q) (1n%)p+q71.

The evaluation is simple: the change of variables x = ut produces, with ¢ = v/u,
¢ dt
(8.2) 1= / In" 't (Ine—1Int)?? -
1

Int

Ine give the result.

The change of variables z =

A second example is 4.275.1:

83 [ lemart e e o= s 0+ 0) - T,
that should be written as
(8.4) /0 [(—Inz)i™" — 2P " (1 —2)9"] dz =T(q) — B(p,q).

The evaluation is elementary, using Euler form of the gamma function
1
(8.5) I'(q) = / (—Inz)? " da.
0

9. Examples with a fake parameter

The evaluation 3.217:
</ ppypl (1 + bx)r~t
has the obvious parameter b. We say that this is a fake parameter in the sense that
a simple scaling shows that the integral is independent of it. Indeed, the change
of variables ¢t = br shows this independence. Therefore the evaluation amounts to
showing that

9.2) /ODO <(1t:_;p _da +t?p_1) dt = 7 cot mp.
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To achieve this, we let y = 1/t in the second integral to produce

o pledy g ldt
9.3 li — .
03) 13%/0 1+ /0 A +t)-r
The integrals above evaluate to B(p —€,¢) — B(e,1 —p —¢). Using
I(a)L'(b) 7r
A4 B(a,b) = =—=——= and I'(a)I'(1 — a) =
(94) (0.0) = o and TP =) = =

this reduces to
(9.5) I= lirr(l) el'(e) (

Now recall that
(9.6) limel'(e) =1

e—0

L(p—eL(p+e)sin(n(p +¢)) —(p) Sin(wp))
eI'(p)L(p + €) sin(n(p + ¢€)) '

and reduce the previous limit to
1 1

O 1= Sy g 2 €

L'(p — )L (p + €)sin(n(p + €)) — T?(p) sin(mp)) .
Using L’Hopital’s rule we find that I = 7 cot(mp) as required.
The example 3.218

oo 2p—1 2p—1
(9.8) / z (a+2) dx = 7 cot p
0 (a+ x)Pap

also shows a fake parameter. The change of variable z = at reduces the integral above
to

(9.9) dt = 7 cot

00 t2p—l _ (1 + t)Qp—l
/0 (L+t)pep

This can be written as

(9.10) I= /OOO ((i;p _a +t?p1) dt.

The result now follows from (9.2).

10. Another type of logarithmic integral
Entry 4.251.1 is

oo a—1 1 bafl
(10.1) / z D e =" (Inb — wcotwa) .
0 T+b sin Ta

To check this evaluation we first scale by = = bt and obtain

oo ga—1] oo o=l gt oo o=l In¢
(10.2) / T 2% gp =pol lnb/ + b‘H/ L
0 x+b 0 1+t 0 1+t
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The first integral is simply

oo pa—l g T
10. = B(a,1 —a)=T(a)['(1 —a) = .
( 0 3) /0 14t (CL, CL) (a) ( CL) sin ra
The second one is evaluated as
¢l nt
(10.4) / L e
0 1+¢ sin”(ma)

by differentiating (4.1) with respect to a. The evaluation follows from here.

11. A hyperbolic looking integral
The evaluation of 3.457.3:

° xdzx 1 JT
11.1 ————=-—7—B8 (—7—) Ina,
(11.1) /DO (a2e® + e—7)m 2an \272) ¢

is done as follows: write
1 [ zdx

11.2 I=—
( ) at J_ (ae® +a=le—)m

and let t = ae” to produce

1 [t (lnt -1
(11.3) ;-1 th~1(Int —Ina)dt
at Jo (1+22)m

The change of variables s = t? yields

1 /°° s*/271 In s ds 1na/°° sH/2=1 g
0 0

(114) = Tan A+sr  2a¢ ), (At

The first integral vanishes. This follows directly from the change s — 1/s. The second
integral is the beta value indicated in the formula.
In particular, the value a = 1 yields

(11.5) /OO _xdz

14
oo Cosh” x

Differentiating with respect to p produces

(11.6) / zIncoshzdr =0,

— 00

that appears as 4.321.1 in [2].
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