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The integrals in Gradshteyn and Ryzhik.

Part 8: Combinations of powers, exponentials and logarithms.

Victor H. Moll, Jason Rosenberg, Armin Straub, and Pat Whitworth

Abstract. We describe some examples of integrals from the table of Gradshteyn
and Ryzhik where the integrand is a combination of powers, exponentials and log-
arithms. The expressions for some of these integrals involve the Stirling numbers
of the first kind.

1. Introduction

The uninitiated reader of the table of integrals by I. S. Gradshteyn and I. M.
Ryzhik [4] will surely be puzzled by choice of integrands. In this note we provide an
elementary proof of the evaluation 4.353.3

(1.1)

∫ 1

0

(ax+ n+ 1)xneax lnxdx = ea

n
∑

k=0

(−1)k−1 n!

(n− k)!ak+1
+ (−1)n n!

an+1
.

We also consider the integrals

(1.2) qn :=

∫ 1

0

xne−x lnxdx

and the companion family

(1.3) pn :=

∫ 1

0

xne−x dx.

The integral qn corresponds to the case a = −1 in (1.1). Section 3 provides closed-form
expressions for pn and qn. Section 4 considers the generalization

(1.4) Pn(a) =

∫ 1

0

xne−ax dx and Qn(a) =

∫ 1

0

xne−ax lnxdx.
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The main result of this section is the closed-form expressions

(1.5) Pn(a) :=

∫ 1

0

xne−ax dx =
n!

an+1

(

1 − e−a

n
∑

k=0

ak

k!

)

,

and

Qn(a) :=

∫ 1

0

xne−ax lnxdx =
n!

an+1





n
∑

k=1

1

k



1 − e−a

k−1
∑

j=0

aj

j!



+ aQ0(a)



 ,

where

(1.6) Q0(a) =

∫ 1

0

e−ax lnxdx = −
1

a
(γ + ln a+ Γ(0, a)) ,

and Γ(0, a) is the incomplete gamma function defined by

(1.7) Γ(a, x) :=

∫ ∞

x

ta−1e−t dt.

2. The evaluation of 4.353.3

The identity

(2.1)
d

dx

(

xn+1eax
)

= (ax+ n+ 1)xneax

and integration by parts yield

(2.2)

∫ 1

0

(ax+ n+ 1)xneax lnxdx = −

∫ 1

0

xneax dx.

This last integral appears as 3.351.1 in [4]. We have obtained a closed-form expression
for it in [2]. A new proof is presented in Section 4.

A closed form expression for the right hand side of (2.2) is obtained from

(2.3)

∫ 1

0

xneax dx =

(

d

da

)n
ea − 1

a
.

The symbolic evaluation of (2.3) for small values of n ∈ N suggests the existence of a
polynomial Pn(a) such that

(2.4)

∫ 1

0

xneax dx =
(−1)n+1 n!

an+1
+
Pn(a)

an+1
ea.

The next lemma confirms the existence of this polynomial.

Lemma 2.1. The function Pn(a) defined by

(2.5) Pn(a) = an+1e−a

((

d

da

)n
ea − 1

a
−

(−1)n+1n!

an+1

)

is a polynomial of degree n.
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Proof. Let D = d
da

. Then Dn+1 = D(Dn) produces the recurrence

(2.6) Pn+1(a) = aP ′
n(a) + (a− n− 1)Pn(a).

The initial condition P0(a) = 1 and (2.6) show that Pn is a polynomial of degree n. �

Theorem 2.2. The polynomial

(2.7) Qn(a) := (−1)nPn(−a)

has positive integer coefficients, written as

(2.8) Qn(a) =

n
∑

k=0

bn,ka
k.

These coefficients satisfy

bn+1,0 = (n+ 1)bn,0(2.9)

bn+1,k = (n+ 1 − k)bn,k + bn,k−1, 1 6 k 6 n

bn+1,n+1 = bn,n.

Moreover, the polynomial Qn(a) is given by

(2.10) Qn(a) = n!

n
∑

k=0

ak

k!

Proof. The recurrence (2.6) yields

(2.11) Qn+1(a) = −aQ′
n(a) + (a+ n+ 1)Qn(a).

The recursion for the coefficients bn,k follows directly from here. Morover, it is clear
that bn,n = 1 and bn,0 = n!. A little experimentation suggets that bn,k = n!/k!, and
this can be established from (2.9). �

This proposition amounts to the evaluation of 3.351.1 in [4]:

(2.12)

∫ u

0

xneax dx =
(−1)n+1 n!

an+1
+

eau

an+1

n
∑

k=0

n!

k!
(−1)n−kukak.

The reader will find a proof of this formula in [2].

3. A new family of integrals

In this section we consider the family of integrals

(3.1) qn :=

∫ 1

0

xne−x lnxdx,

and its companion

(3.2) pn :=

∫ 1

0

xne−x dx.
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Lemma 3.1. The integrals pn, qn satisfy the recursion

pn+1 = (n+ 1)pn − e−1(3.3)

qn+1 = (n+ 1)qn + pn(3.4)

Proof. Integrate by parts. �

The initial conditions are

(3.5) p0 = 1 − e−1 and q0 =

∫ 1

0

e−x lnxdx = γ − Ei(−1).

Here γ is Euler’s constant defined by

(3.6) γ := lim
n→∞

n
∑

k=1

1

k
− lnn

with integral representation

(3.7) γ =

∫ ∞

0

e−x lnxdx

given as 4.331.1. The reader will find in [3] a proof of this identity. The second term
in (3.5) is converted into

(3.8)

∫ ∞

1

e−x lnxdx =

∫ ∞

1

e−x

x
dx

and this last form is identified as Ei(−1), where Ei is the exponential integral defined
by

(3.9) Ei(z) = −

∫ ∞

−z

e−x

x
dx.

In the current context, the value of Ei(−1) will be simply one of the terms in the
initial condition q0.

We determine first an explicit expression for pn. The recursion (3.3) shows the
existence of integers an, bn such that

(3.10) pn = an + bne
−1,

with a0 = 1, b0 = −1. From (3.3) we obtain

(3.11) an+1 + bn+1e
−1 = (n+ 1)an + [(n+ 1)bn − 1] e−1.

The irrationality of e produce the system

an+1 = (n+ 1)an, with a0 = 1,(3.12)

bn+1 = (n+ 1)bn − 1, with b0 = −1.(3.13)

The expression an = n! follows directly from (3.12). To solve (3.13), defineBn := bn/n!
and observe that

(3.14) Bn+1 = Bn −
1

(n+ 1)!
,
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that telescopes to

(3.15) bn = −n!

n
∑

k=0

1

k!
.

We have shown:

Proposition 3.2. The integral pn in (3.2) is given by

(3.16) pn =

∫ 1

0

xne−x dx =
n!

e

(

e−
n
∑

k=0

1

k!

)

.

We now determine a similar closed-form for qn. The recursion (3.4) shows the
existence of integers cn, dn, fn such that

(3.17) qn = cn + dne
−1 + fnq0.

In order to produce a system similar to (3.12,3.13) we will assume that the constants
1, e−1 and q0 = −(γ+Ei(−1)) are linearly independent over Q. Under this assumption
(3.4) produces

cn+1 = (n+ 1)cn + n!,(3.18)

dn+1 = (n+ 1)cn − n!

n
∑

k=0

1

k!
,(3.19)

fn+1 = (n+ 1)fn,(3.20)

with the initial conditions c0 = 0, d0 = 0 and f0 = 1.
The expression fn = n! follows directly from (3.20). To solve (3.18) and (3.19) we

employ the following result established in [1].

Lemma 3.3. Let an, bn and rn be sequences with an, bn 6= 0. Assume that zn

satisfies

(3.21) anzn = bnzn−1 + rn, n > 1

with initial condition z0. Then

(3.22) zn =
b1b2 · · · bn
a1a2 · · ·an

(

z0 +
n
∑

k=1

a1a2 · · · ak−1

b1b2 · · · bk
rk

)

.

We conclude that

(3.23) cn = n!

n
∑

k=1

1

k
,

and

(3.24) dn = −n!

n
∑

k=1

1

k

k−1
∑

j=0

1

j!
.

The expression for cn shows that they coincide with the Stirling numbers of the first
kind: cn = |s(n+ 1, 2)|.
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We have established

Proposition 3.4. The integral qn in (3.1) is given by

(3.25) qn =

∫ 1

0

xne−x lnxdx = n!





1

e

n
∑

k=1

1

k



e−

k−1
∑

j=0

1

j!



+ q0



 .

Example 3.1. The expressions for pn and qn provide the evaluation of 4.351.1
in [4]

(3.26)

∫ 1

0

(1 − x)e−x lnxdx =
1 − e

e
,

by identifying the integral as q0 − q1. The recurrence (3.4) shows that

(3.27) q0 − q1 = −p0 = e−1 − 1,

as claimed.

Example 3.2. The evaluation of 4.362.1 in [4]

(3.28)

∫ 1

0

xex ln(1 − x) dx =

∫ 1

0

(1 − t)e1−t ln t dt

is achieved by observing that this integral is e(q0 − q1) = 1 − e.

4. A parametric family

In this section we consider the evaluation of

Pn(a) :=

∫ 1

0

xne−ax dx(4.1)

Qn(a) :=

∫ 1

0

xne−ax lnxdx.(4.2)

The integrals qn considered in Section 3 corresponds to the special case: qn = Qn(1).
We now establish a recursion for Qn by differentiating (4.2).

Lemma 4.1. The integral Qn(a) satisfies the relation

(4.3) Qn+1(a) = −
d

da
Qn(a).

To obtain a closed-form expression for Qn(a) we need to determine the initial
condition

(4.4) Q0(a) =

∫ 1

0

e−ax lnxdx.

This is expressed in terms of the incomplete gamma function defined in 8.350.1 by

(4.5) Γ(a, x) :=

∫ ∞

x

ta−1e−t dt.

Observe that Γ(a, 0) = Γ(a), the usual gamma function.
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Lemma 4.2. The initial condition Q0(a) is given by

(4.6) Q0(a) =

∫ 1

0

e−ax lnxdx = −
1

a
(γ + ln a+ Γ(0, a)) .

Proof. The change of variables t = ax yields

(4.7) Q0(a) =
1

a

∫ a

0

e−t ln t dt−
ln a

a

(

1 − e−a
)

.

Then

(4.8)

∫ a

0

e−t ln t dt =

∫ ∞

0

e−t ln t dt−

∫ ∞

a

e−t ln t dt.

The first integral is

(4.9)

∫ ∞

0

e−t ln t dt = −γ,

that simply reflects the fact that γ = −Γ′(1). Integrating by parts yields

(4.10)

∫ ∞

a

e−t ln t dt = e−a ln a+ Γ(0, a).

The formula for Q0(a) is established. �

We now determine a closed-form expression for Pn(a) and Qn(a) following the
procedure employed in Section 3.

Lemma 4.3. The integrals Pn and Qn(a) satisfy the recursion

Pn+1(a) =
1

a

(

(n+ 1)Pn(a) − e−a
)

(4.11)

Qn+1(a) =
1

a
((n+ 1)Qn(a) + Pn(a)) .(4.12)

The initial conditions are given by

(4.13) P0(a) =
1

a
(1 − e−a), and Q0(a) = −

1

a
(γ + Γ(0, a) + ln a).

Proof. Integrate by parts. �

We conclude that we can write

(4.14) Pn(a) = An(a) −Bn(a)e−a,

and

(4.15) Qn(a) = Cn(a) −Dn(a)e−a − En(a)(γ + Γ(0, a) + ln a).
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Lemma 4.4. The recursions (4.11) and (4.12) imply that

An+1(a) =
1

a
(n+ 1)An(a),(4.16)

Bn+1(a) =
1

a
[(n+ 1)Bn(a) + 1] ,

Cn+1(a) =
1

a
[(n+ 1)Cn(a) +An(a)] ,

Dn+1(a) =
1

a
[(n+ 1)Dn(a) +Bn(a)] ,

En+1(a) =
1

a
(n+ 1)En(a)

with initial conditions

(4.17) A0(a) = B0(a) = E0(a) =
1

a
and C0(a) = D0(a) = 0.

These recursion can now be solved as in Section 3 to produce a closed-form ex-
pression for the integrals Pn(a) and Qn(a). We employ the notation

(4.18) Hn =

n
∑

k=1

1

k

for the harmonic numbers and

(4.19) Expn(x) =

n
∑

k=0

xk

k!

for the partial sums of the exponential function.

Theorem 4.5. Let a ∈ R and n ∈ N. Then

(4.20) Pn(a) :=

∫ 1

0

xne−ax dx =
n!

an+1

[

1 − e−aExpn(a)
]

,

and

Qn(a) :=

∫ 1

0

xne−ax lnxdx =
n!

an+1

[

Hn −G(a) − e−a

n
∑

k=1

1

k
Expk−1(a)

]

,

where G(a) = −aQ0(a) = γ + Γ(0, a) + ln a.

These expressions provide the evaluations of two integrals in [4].

Example 4.1. Formula 4.351.2 states that

(4.21)

∫ 1

0

e−ax(−ax2 + 2x) lnxdx =
1

a2

[

−1 + (1 + a)e−a
]

.

In order to verify this, observe that the stated integral is

(4.22) −a

∫ 1

0

x2e−ax lnxdx + 2

∫ 1

0

xe−ax lnxdx = −aQ2(a) + 2Q1(a).

The expressions in Theorem 4.5 now complete the evaluation.
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Example 4.2. Formula 4.353.3 in [4] gives the value of

(4.23) In(a) :=

∫ 1

0

(−ax+ n+ 1)xne−ax lnxdx.

Observe that

(4.24) In(a) = −aQn+1(a) + (n+ 1)Qn(a),

and using the recursion (4.12) we conclude that In(a) = −Pn(a). The expression in
Theorem 4.5 is precisely what appears in [4].

We conclude with the evaluation of a series shown to us by Tewodros Amdeberhan.
Expand the exponential term in (4.21) and integrate term by term to obtain
(4.25)

∞
∑

k=0

(−a)k

k! (n+ 1 + k)2
=

n!

an+1

(

−ψ(n+ 1) + ln a+ Γ(0, a) + e−a

n
∑

k=0

1

k
Expk−1(a)

)

.

Here

(4.26) ψ(x) =
Γ′(x)

Γ(x)

is the digamma function defined in 8.360.1 of [4]. the identity

(4.27) ψ(n+ 1) = Hn − γ,

that is a direct consequence of the functional equation Γ(x+ 1) = xΓ(x) and Γ′(1) =
−γ, was used to transform (4.25).

The identity (4.25) can be used to provide multiple expressions for the incomplete
gamma function, such as

(4.28)

∫ ∞

a

e−x

x
dx =

∞
∑

k=0

(−1)kan+1+k

n! k! (n+ 1 + k)2
+ ψ(n+ 1) − ln a− e−a

n
∑

k=1

Expk−1(a)

k
,

and the special case for n = 0:

(4.29)

∫ ∞

a

e−x

x
dx = −γ − ln a+

∞
∑

k=0

(−1)kak+1

(k + 1)! (k + 1)
.

These issues will be explored in a future publication.
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