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The method of brackets. Part 2: examples and applications

Ivan Gonzalez, Victor H. Moll, and Armin Straub

Abstract. A new heuristic method for the evaluation of definite integrals is
presented. This method of brackets has its origin in methods developed for the
evaluation of Feynman diagrams. The operational rules are described and the
method is illustrated with several examples. The method of brackets reduces
the evaluation of a large class of definite integrals to the solution of a linear
system of equations.

1. Introduction

The method of brackets presented here provides a method for the evaluation
of a large class of definite integrals. The ideas were originally presented in [6] in
the context of integrals arising from Feynman diagrams. A complete description of
the operational rules of the method together with a variety of examples was first
discussed in [5].

The method is quite simple to work with and many of the entries from the
classical table of integrals [7] can be derived using this method. The basic idea is
to introduce the formal symbol 〈a〉, called a bracket, which represents the divergent
integral

(1.1)

∫ ∞

0

xa−1 dx.

The formal rules for operating with these brackets are described in Section 2 and
their justification (especially of the heuristic Rule 2.3) is work-in-progress. In par-
ticular, convergence issues are ignored at the moment. Roughly, each integral gen-
erates a linear system of equations and for each choice of free variables the method
yields a series with the free variables as summation indices. A heuristic rule states
that those converging in a common region give the desired evaluation.

Section 3 illustrates the method by evaluating the Laplace transform of the
Bessel function Jν(x). In this example, the two resulting series converge in different
regions and are analytic continuations of each other. This is a general phenome-
non which is used in Section 5 to produce an explicit analytic continuation of the
hypergeometric function q+1Fq(x). Section 4 presents the evaluation of a family of
integrals Cn appearing in Statistical Mechanics. These were introduced in [4] as a
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toy model and their physical interpretation was discovered later. The method of
brackets is employed here to evaluate the first four values, the only known cases
(an expression for the next value C5 in terms of a double hypergeometric series is
possible but is not given here). The last section employs the method of brackets to
resolve a Feynman diagram.

2. The method of brackets

The method of brackets discussed in this paper is based on the assignment of
the formal symbol 〈a〉 to the divergent integral (1.1).

Example 2.1. If f is given by the formal power series

f(x) =

∞
∑

n=0

anx
αn+β−1,

then the improper integral of f over the positive real axis is formally written as the
bracket series

(2.1)

∫ ∞

0

f(x) dx =
∑

n

an 〈αn+ β〉 .

Here, and in the sequel,
∑

n is used as a shorthand for
∑∞

n=0.

Formal rules for operating with brackets are described next. In particular, Rule
2.2 describes how to evaluate a bracket series such as the one appearing in (2.1).
To this end, it is useful to introduce the symbol

(2.2) φn =
(−1)n

Γ(n+ 1)
,

which is called the indicator of n.

Example 2.2. The gamma function has the bracket expansion

(2.3) Γ(a) =

∫ ∞

0

xa−1e−x dx =
∑

n

φn 〈n+ a〉 .

Rule 2.1. The bracket expansion

(2.4)
1

(a1 + a2 + · · · + ar)α
=

∑

m1,...,mr

φm1,...,mr
am1

1 · · · amr

r

〈α+m1 + · · · +mr〉
Γ(α)

holds. Here φm1,...,mr
is a shorthand notation for the product φm1

· · ·φmr
. If there

is no possibility of confusion this will be further abridged as φ{m}. The notation
∑

{m} is to be understood likewise.

Rule 2.2. A series of brackets is assigned a value according to

(2.5)
∑

n

φnf(n) 〈an+ b〉 =
1

|a|f(n∗)Γ(−n∗),

where n∗ is the solution of the equation an+ b = 0. Observe that this might result
in the replacing of the index n, initially a nonnegative integer, by a complex number
n∗.

Similarly, a higher dimensional bracket series, that is,
∑

{n}

φ{n}f(n1, . . . , nr) 〈a11n1 + · · ·a1rnr + c1〉 · · · 〈ar1n1 + · · · arrnr + cr〉
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is assigned the value

(2.6)
1

|det(A)|f(n∗
1, · · · , n∗

r)Γ(−n∗
1) · · ·Γ(−n∗

r),

where A is the matrix of coefficients (aij) and (n∗
i ) is the solution of the linear

system obtained by the vanishing of the brackets. The value is not defined if the
matrix A is not invertible.

Rule 2.3. In the case where a higher dimensional series has more summation
indices than brackets, the appropriate number of free variables is chosen among
the indices. For each such choice, Rule 2.2 yields a series. Those converging in a
common region are added to evaluate the desired integral.

3. An example from Gradshteyn and Ryzhik

The second author is involved in a long term project of providing proofs of all
the entries from the classical table of integrals by Gradshteyn and Ryzhik [7]. The
proofs can be found at:

http://www.math.tulane.edu/∼vhm/Table.html

In this section the method of brackets is illustrated to find

(3.1)

∫ ∞

0

xνe−αxJν(βx) dx =
(2β)νΓ(ν + 1

2 )√
π(α2 + β2)ν+1/2

which is entry 6.623.1 of [7]. Here

(3.2) Jν(x) =

∞
∑

k=0

(−1)k(x/2)2k+ν

k! Γ(k + ν + 1)

is the Bessel function of order ν. To this end, the integrand is expanded as

e−αxJν(βx) =

(

∑

n

φn(αx)n

)(

∑

k

φk

(βx
2 )2k+ν

Γ(k + ν + 1)

)

(3.3)

=
∑

k,n

φk,n

αn(β
2 )2k+ν

Γ(k + ν + 1)
xn+2k+2ν ,

so as to obtain the bracket series

(3.4)

∫ ∞

0

e−αxJν(βx)dx =
∑

k,n

φk,n

αn(β
2 )2k+ν

Γ(k + ν + 1)
〈n+ 2k + 2ν + 1〉 .

The evaluation of this double sum by the method of brackets produces two series
corresponding to using either k or n as the free variable when applying Rule 2.2.

The index k is free. Choosing k as the free variable when applying Rule 2.2
to (3.4), yields n∗ = −2k − 2ν − 1 and thus the resulting series

∑

k

φk

α−2k−2ν−1(β
2 )2k+ν

Γ(k + ν + 1)
Γ(2k + 2ν + 1)(3.5)

= α−2ν−1(β
2 )ν Γ(2ν + 1)

Γ(ν + 1)
1F0

(

ν + 1
2

−

∣

∣

∣

∣

−β
2

α2

)

.
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The right-hand side employs the usual notation for the hypergeometric function

(3.6) pFq

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

x

)

=

∞
∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!

where (α)n = Γ(α+n)
Γ(α) is the Pochhammer symbol. Note that the 1F0 in (3.5)

converges provided |β| < |α|. In this case, the standard identity 1F0(a|x) = (1 −
x)−a together with the duplication formula for the Γ function shows that the series
in (3.5) is indeed equal to the right-hand side of (3.1).

The index n is free. In this second case, the linear system in Rule 2.2 has
determinant 2 and yields k∗ = −n/2 − ν − 1/2. This gives

(3.7)
1

2

∑

n

φn

αn(β
2 )−n−ν−1

Γ(−n/2 + 1/2)
Γ(n/2 + ν + 1/2).

This series now converges provided that |β| > |α| in which case it again sums to
the right-hand side of (3.1).

Note. This is the typical behavior of the method of brackets. The different

choices of indices as free variables give representations of the solution valid in dif-

ferent regions. Each of these is an analytic continuation of the other ones.

4. Integrals of the Ising class

In this section the method of brackets is used to discuss the integral

(4.1) Cn =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
.

This family was introduced in [4] as a caricature of the Ising susceptibility integrals

(4.2) Dn =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

∏

i<j

(

ui − uj

ui + uj

)2
1

(

∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un
.

Actually, the integrals Cn appear naturally in the analysis of certain amplitude
transforms [10]. The first few values are given by

(4.3) C1 = 2, C2 = 1, C3 = L−3(2), C4 =
7

12
ζ(3).

Here, LD is the Dirichlet L-function. In this case,

(4.4) L−3(2) =

∞
∑

n=0

(

1

(3n+ 1)2
− 1

(3n+ 2)2

)

.

No analytic expression for Cn is known for n ≥ 5. Similarly,

(4.5) D1 = 2, D2 =
1

3
, D3 = 8 +

4π2

3
− 27L−3(2), D4 =

4π2

9
− 1

6
− 7

12
ζ(3)

are given in [4]. High precision numerical evaluation and PSLQ experiments have
further produced the conjecture

D5 = 42 − 1984Li4(
1
2 ) +

189

10
π4 − 74ζ(3) − 1272ζ(3) ln 2 + 40π2 ln2 2(4.6)

− 62

3
π3 +

40

3
π2 ln 2 + 88 ln4 2 + 464 ln2 2 − 40 ln 2.
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The integral Cn is the special case k = 1 of the family

(4.7) Cn,k =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)k+1

du1

u1
· · · dun

un

that also gives the moments of powers of the Bessel function K0 via

(4.8) Cn,k =
2n−k+1

n! k!
cn,k :=

2n−k+1

n! k!

∫ ∞

0

tkKn
0 (t) dt.

The values

(4.9) c1,k = 2k−1Γ2

(

k + 1

2

)

, c2,k =

√
π

4

Γ3
(

k+1
2

)

Γ
(

k
2 + 1

) ,

as well as the recursion

(4.10) (k + 1)4c3,k − 2(5k2 + 20k + 21)c3,k+2 + 9c3,k+4 = 0

with initial data

(4.11) c3,0 =
3α

32π
, c3,1 =

3

4
L−3(2), c3,2 =

α

96π
− 4π5

9α
, c3,3 = L−3(2) − 2

3
,

where α = 2−2/3Γ6(1
3 ) are given in [1] and [3].

The evaluation of these integrals presented in the literature usually begins with
the introduction of spherical coordinates. This reduces the dimension of Cn by two
and immediately gives the values of C1 and C2. The evaluation of C3 is reduced to
the logarithmic integral

(4.12) C3 =
2

3

∫ ∞

0

ln(1 + x) dx

x2 + x+ 1
.

Its value is obtained by the change of variables x→ 1
t −1 followed by an expansion

of the integrand. A systematic discussion of these type of logarithmic integrals is
provided in [9]. The value of C4 is obtained via the double integral representation

(4.13) C4 =
1

6

∫ ∞

0

∫ ∞

0

ln(1 + x+ y)

(1 + x+ y)(1 + 1/x+ 1/y)− 1

dx

x

dy

y
.

Moreover, the limiting behavior

(4.14) lim
n→∞

Cn = 2e−2γ

was established in [4].
In this section the method of brackets is used to obtain the expressions for C2,

C3, and C4 described above. An advantage of this method is that it systematically
gives an analytic expression for these integrals. When applied to C5, the method
produces a double series representation which is not discussed here.

4.1. Evaluation of C2,k. The numbers C2,k are given by

(4.15) C2,k = 2

∫ ∞

0

∫ ∞

0

dx dy

xy (x+ 1/x+ y + 1/y)
k+1

.

A direct application of the method of brackets, by applying Rule 2.1 to the in-
tegrand as in (4.15), results in a bracket expansion involving a 4-fold sum and 3
brackets. Rules 2.2 and 2.3 translates this into a collection of series with 4− 3 = 1
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summation indices. However, it is generally desirable to minimize the final num-
ber of summations by reducing the number of sums and increasing the number of
brackets. In this example this is achieved by writing

C2,k = 2

∫ ∞

0

∫ ∞

0

(xy)k dx dy

(x2y + y + xy2 + x)k+1

= 2

∫ ∞

0

∫ ∞

0

(xy)k dx dy

(xy [x+ y] + [x+ y])k+1
.

In the evaluation of these expressions, the term (x + y) must be expanded at the
last step. The method of brackets now yields

1

(xy [x+ y] + [x+ y])
k+1

=
∑

n1,n2

φn1,n2
xn1yn1 (x+ y)

n1+n2
〈k + 1 + n1 + n2〉

Γ(k + 1)
,

and the expansion of the term (x+ y) gives

1

(x+ y)
−n1−n2

=
∑

n3,n4

φn3,n4
xn3yn4

〈−n1 − n2 + n3 + n4〉
Γ (−n1 − n2)

.

Replacing in the integral produces the bracket expansion

C2,k = 2
∑

{n}

φ{n}
〈k + 1 + n1 + n2〉

Γ(k + 1)

〈−n1 − n2 + n3 + n4〉
Γ(−n1 − n2)

× 〈k + 1 + n1 + n3〉 〈k + 1 + n1 + n4〉 .
The value of this formal sum is now obtained by solving the linear system k + 1 +
n1 + n2 = 0, −n1 − n2 + n3 + n4 = 0, k+ 1 + n1 + n3 = 0, and k+ 1 + n1 + n4 = 0
coming from the vanishing of brackets. This system has determinant 2 and its
unique solution is n∗

1 = n∗
2 = n∗

3 = n∗
4 = −k+1

2 . It follows that

(4.16) C2,k =
Γ (−n∗

1) Γ (−n∗
2) Γ (−n∗

3) Γ (−n∗
4)

Γ(k + 1)Γ (−n∗
1 − n∗

2)
=

Γ
(

k+1
2

)4

Γ(k + 1)2
.

Note that, upon employing Legendre’s duplication formula for the Γ function, this
evaluation is equivalent to (4.9). In particular, this confirms the value C2 = C2,1 = 1
in (4.3).

Remark 4.1. The evaluation

C2,k(α, β) = 2

∫ ∞

0

∫ ∞

0

xα−1yβ−1 dx dy

(x+ 1/x+ y + 1/y)
k+1

(4.17)

=
Γ
(

k+1+α+β
2

)

Γ
(

k+1−α−β
2

)

Γ
(

k+1+α−β
2

)

Γ
(

k+1−α+β
2

)

Γ(k + 1)2

that generalizes C2,k is obtained as a bonus. Similarly,

Jr,s(α, β) = 2

∫ ∞

0

∫ ∞

0

xα−1yβ−1 dx dy

(x + y)r(xy + 1)s
(4.18)

=
Γ
(

−r+α+β
2

)

Γ
(

2s+r−α−β
2

)

Γ
(

r+α−β
2

)

Γ
(

r−α+β
2

)

Γ(r)Γ(s)
.

Note that C2,k(α, β) = Jk+1,k+1(α + k + 1, β + k + 1).
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Remark 4.2. The Ising susceptibility integralD2, see (4.2), is obtained directly
from the expression for Jr,s given above. Indeed,

D2 = 2

∫ ∞

0

∫ ∞

0

(x2 − 2xy + y2)
xy dx dy

(x+ y)4(xy + 1)2
(4.19)

= 2 (J4,2(4, 2) − 2J4,2(3, 3) + J4,2(2, 4))

=
1

3
.

This agrees with (4.5). This technique also yields the generalization

D2(α, β) = 2

∫ ∞

0

∫ ∞

0

(

x− y

x+ y

)2
xα−1yβ−1 dx dy

(x+ 1/x+ y + 1/y)
2(4.20)

=
(b − a)(b+ a)(2 + (b− a)2)π2

12(cos(απ) − cos(βπ))

with limiting case D2(α, α) = 1
3

απ
sin(απ) .

4.2. Evaluation of C3,k. Next, consider the integral

C3,k =
2

3

∫ ∞

0

∫ ∞

0

∫ ∞

0

dx dy dz

xyz (x+ 1/x+ y + 1/y + z + 1/z)k+1
(4.21)

=
2

3

∫ ∞

0

∫ ∞

0

∫ ∞

0

(xyz)k dx dy dz

(xyz (x+ y) + z (x+ y) + xyz2 + xy)
k+1

.

The second form of the integrand is motivated by the desire to to minimize the
number of sums and to maximize the number of brackets in the expansion. The
denominator is now expanded as

∑

{n}

φ{n}(xy)
n1+n3+n4zn1+n2+2n3 (x+ y)n1+n2

〈k + 1 + n1 + n2 + n3 + n4〉
Γ (k + 1)

,

and further expanding (x+ y)n1+n2 as

(x+ y)
n1+n2 =

∑

n5,n6

φn5,n6
xn5yn6

〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

produces a complete bracket expansion of the integrand of C3,k. Integration then
yields

C3,k =
2

3

1

k!

∑

{n}

φ{n}
〈−n1 − n2 + n5 + n6〉

Γ (−n1 − n2)
(4.22)

× 〈k + 1 + n1 + n2 + n3 + n4〉 〈k + 1 + n1 + n3 + n4 + n5〉
× 〈k + 1 + n1 + n3 + n4 + n6〉 〈k + 1 + n1 + n2 + 2n3〉 .

This expression is regularized by replacing the bracket 〈k+1+n1 +n2 +2n3〉 with
〈k + 1 + n1 + n2 + 2n3 + ǫ〉 with the intent of letting ǫ → 0. (This corresponds to
multiplying the initial integrand with zǫ; however, note that many other regulariza-
tions are possible and eventually lead to Theorem 4.3. It will become clear shortly,
see (4.24), why regularizing is necessary.) The method of brackets now gives a set
of series expansions obtained by the vanishing of the five brackets in (4.22). The
solution of the corresponding linear system (which has determinant 2) leaves one
free index and produces the integral as a series in this variable. Of the six possible
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free indices, only n3 and n4 produce convergent series (more specifically, for each
free index one obtains a hypergeometric series 3F2 times an expression free of the
index; for the indices n3, n4 the argument of this 3F2 is 1

4 while otherwise it is 4.)
The heuristic Rule 2.3 states that their sum yields the value of the integral:

(4.23) C3,k =
1

3
lim
ǫ→0

1

k!

∞
∑

n=0

(−1)n

n!
(fk,n(ǫ) + fk,n(−ǫ))

where

(4.24) fk,n(ǫ) =
Γ
(

n+ k+1+ǫ
2

)4
Γ(−n− ǫ)

Γ(2n+ k + 1 + ǫ)
.

Observe that the terms fk,n(ǫ) are contributed by the index n3 while the terms
fk,n(−ǫ) come from the index n4. At ǫ = 0, each of them has a simple pole.
Consequently, the even combination fk,n(ǫ) + fk,n(−ǫ) has no pole at ǫ = 0. Using
the expansions

(4.25) Γ(x+ ǫ) = Γ(x)(1 + ψ(x)ǫ) +O(ǫ2),

for x 6= 0,−1,−2, . . ., as well as

(4.26) Γ(−n+ ǫ) =
(−1)n

n!

(

1

ǫ
+ ψ(n+ 1)

)

+O(ǫ),

for n = 0, 1, 2, . . ., provides the next result.

Theorem 4.3. The integrals C3,k are given by

C3,k =
2

3

1

k!

∞
∑

n=0

1

(n!)2
Γ
(

n+ k+1
2

)4

Γ(2n+ k + 1)

(

ψ(n+ 1) − 2ψ
(

n+ k+1
2

)

+ ψ(2n+ k + 1)
)

.

In particular, for k = 1

(4.27) C3 =
2

3

∞
∑

n=0

(n!)2

(2n+ 1)!
(ψ(2n+ 2) − ψ(n+ 1)) .

The evaluation of this sum using Mathematica 7 yields a large collection of special
values of (poly-)logarithms. After simplifications, it yields C3 = L−3(2) as in (4.3).

Remark 4.4. An extension of Theorem 4.3 is presented next:

(4.28) C3,k(α, β, γ) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

xα−1yβ−1zγ−1 dx dy dz

(x+ 1/x+ y + 1/y + z + 1/z)
k+1

,

for γ = 0, is given by

1

k!

∞
∑

n=0

1

(n!)2

Γ
(

n+ k+1±α±β
2

)

Γ(2n+ k + 1)

(

ψ(n+ 1) − 1

2
ψ
(

n+ k+1±α±β
2

)

+ ψ(2n+ k + 1)

)

where the notation Γ(n+ k+1±α±β
2 ) = Γ(n+ k+1+α+β

2 )Γ(n+ k+1+α−β
2 ) · · · as well

as ψ(n+ k+1±α±β
2 ) = ψ(n+ k+1+α+β

2 )+ψ(n+ k+1+α−β
2 )+ · · · is employed. Similar

expressions can be given for other integral values of γ. In the case where γ is not
integral, C3,k(α, β, γ) can be written as a sum of two 3F2’s with Γ factors. The
symmetry of C3,k(α, β, γ) in α, β, γ, shows that this can be done if at least one of
these arguments is nonintegral.
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4.3. Evaluation of C4. The last example discussed here is

C4 =
1

6

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

dx dy dz dw

xyzw (x+ 1/x+ y + 1/y + z + 1/z + w + 1/w)
2 .

To minimize the number of sums and to maximize the number of brackets this is
rewritten as

1

6

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

x1+ǫy1+ǫz1+ǫw1+ǫ dx dy dz dw

[Axyzw(x + y) + zw(x+ y) + xyzw(z + w) + xy(z + w)]
2

with the intent of letting ǫ → 0 and A → 1. As in the case of C3,k, the regulator

parameter ǫ is introduced to cure the divergence of the resulting expressions. Sim-
ilarly, the parameter A is employed to divide the resulting sums into convergence
groups according to the heuristic Rule 2.3. The denominator expands as

∑

{n}

φ{n} A
n1xn1+n3+n4yn1+n3+n4zn1+n2+n3wn1+n2+n3

× (x+ y)n1+n2(z + w)n3+n4 〈2 + n1 + n2 + n3 + n4〉 .

As before,

(x+ y)n1+n2 =
∑

n5,n6

φn5,n6
xn5yn6

〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

and

(z + w)n3+n4 =
∑

n7,n8

φn7,n8
zn7wn8

〈−n3 − n4 + n7 + n8〉
Γ(−n3 − n4)

.

These expansions of the integrand yield the bracket series

1

6

∑

{n}

φ{n} A
n1 〈2 + n1 + n2 + n3 + n4〉(4.29)

× 〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

〈−n3 − n4 + n7 + n8〉
Γ(−n3 − n4)

× 〈2 + ǫ+ n1 + n3 + n4 + n5〉 〈2 + ǫ+ n1 + n3 + n4 + n6〉
× 〈2 + ǫ+ n1 + n2 + n3 + n7〉 〈2 + ǫ+ n1 + n2 + n3 + n8〉 .

The evaluation of this bracket series by Rules 2.2 and 2.3 yields hypergeometric
series with arguments A (n1, n2, n5, or n6 chosen as the free index) and 1/A (n3,
n4, n7, or n8 chosen as the free index). Either combination produces an expression
for the integral C4. Taking those with argument A (the indices n5 and n6 yield the
same series; however, it is only taken into account once) gives

1

12
A−ǫΓ2(ǫ)Γ2(1 − ǫ)

(

Aǫ

1 + 2ǫ
2F1

(

1
2 + ǫ, 1
3
2 + ǫ

∣

∣

∣

∣

A

)

(4.30)

+
A−ǫ

1 − 2ǫ
2F1

(

1
2 − ǫ, 1
3
2 − ǫ

∣

∣

∣

∣

A

)

− 22F1

(

1
2 , 1
3
2

∣

∣

∣

∣

A

)

)

.
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As ǫ→ 0, the limiting value is

1

24
ln2A ln

(

1 +
√
A

1 −
√
A

)

+
1

3
√
A

[

Li3(
√
A) − Li3(−

√
A)
]

(4.31)

− lnA

6
√
A

[

Li2(
√
A) − Li2(−

√
A)
]

.

Finally, the value of C4 is obtained by taking A→ 1:

(4.32) C4 =
1

3
[Li3(1) − Li3(−1)] =

7

12
ζ(3).

This agrees with (4.3).

5. Analytic continuation of hypergeometric functions

The hypergeometric function pFq, defined by the series

(5.1) pFq(x) = pFq

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

x

)

=

∞
∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
,

converges for all x ∈ C if p < q+1 and for |x| < 1 if p = q+1. In the remaining case,
p > q+1, the series diverges for x 6= 0. The analytic continuation of the series q+1Fq

has been recently considered in [11, 12]. In this section a brackets representation
of the hypergeometric series is obtained and then employed to produce its analytic
extension.

Theorem 5.1. The bracket representation of the hypergeometric function is

given by

pFq(x) =
∑

n
t1,...,tp
s1,...,sq

φn,{t},{s}

[

(−1)q−1x
]n

p
∏

j=1

〈aj + n+ tj〉
Γ(aj)

q
∏

k=1

〈1 − bk − n+ sk〉
Γ(1 − bk)

.

Proof. This follows from (5.1) and the representations

(5.2) (aj)n =
Γ(aj + n)

Γ(aj)
=

1

Γ(aj)

∫ ∞

0

τaj+n−1e−τ dτ =
∑

tj

φtj

〈aj + n+ tj〉
Γ(aj)

as well as

(5.3)
1

(bk)n
= (−1)n Γ(1 − bk − n)

Γ(1 − bk)
= (−1)n

∑

sk

φsk

〈1 − bk − n+ sk〉
Γ(1 − bk)

for the Pochhammer symbol. �

The bracket expression for the hypergeometric function given in Theorem 5.1
contains p + q brackets and p + q + 1 indices (n, tj and sk). This leads to a full
rank system

aj + n+ tj = 0 for 1 ≤ j ≤ p(5.4)

1 − bk − n+ sk = 0 for 1 ≤ k ≤ q.

of linear equations of size (p+q+1)× (p+q) and determinant 1. For each choice of
an index as a free variable the method of brackets yields a one-dimensional series
for the integral.



METHOD OF BRACKETS 11

Series with n as a free variable. Solving (5.4) yields t∗j = −aj − n and

s∗k = −(1 − bk) + n with 1 ≤ j ≤ p and 1 ≤ k ≤ q. Rule 2.2 yields

∞
∑

n=0

[(−1)qx]n

n!

p
∏

j=1

Γ(n+ aj)

Γ(aj)

q
∏

k=1

Γ(−n+ 1 − bk)

Γ(1 − bk)
=

∞
∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
.

This is the original series representation (5.1) of the hypergeometric function. In
particular, in the case q = p− 1, this series converges for |x| < 1.

Series with ti as a free variable. Fix an index i in the range 1 ≤ i ≤ p and
solve (5.4) to get n∗ = −ai − ti, as well as t∗j = ti − aj + ai for 1 ≤ j ≤ p, j 6= i,
and s∗k = −(1 − bk) − ai − ti for 1 ≤ k ≤ q. The method of brackets then produces
the series
∑

ti

φti

[

(−1)q−1x
]−ti−ai Γ(ti + ai)

Γ(ai)

∏

j 6=i

Γ(aj − ai − ti)

Γ(aj)

∏

k

Γ(1 − bk + ai + ti)

Γ(1 − bk)

which may be rewritten as

(−x)−ai

∏

j 6=i

Γ(aj − ai)

Γ(aj)

∏

k

Γ(bk)

Γ(bk − ai)
(5.5)

× q+1Fp−1

(

ai, {1 − bk + ai}1≤k≤q

{1 − aj + ai}1≤j≤p,j 6=i

∣

∣

∣

∣

(−1)p+q−1

x

)

.

Recall that the initial hypergeometric series pFq(x) converges for some x 6= 0 if and
only if p ≤ q+ 1. Hence, assuming that p ≤ q+1, observe that the hypergeometric
series (5.5) converges for some x if and only if p = q + 1.

Series with si as a free variable. Proceeding as in the previous case and
choosing i in the range 1 ≤ i ≤ q and then si as the free index, gives

[

(−1)p+q−1x
]1−bi Γ(bi − 1)

Γ(1 − bi)

∏

j

Γ(1 − aj)

Γ(bi − aj)

∏

k 6=i

Γ(bi − bk)

Γ(1 − bk)
(5.6)

× pFq

( {aj + 1 − bi}1≤j≤p

2 − bi, {1 − bk + bi}1≤k≤q,k 6=i

∣

∣

∣

∣

x

)

.

Summary. Assume p = q+ 1 and sum up the series coming from the method
of brackets converging in the common region |x| > 1. Rule 2.3 gives the analytic
continuation

q+1Fq(x) =

q+1
∑

i=1

(−x)−ai

∏

j 6=i

Γ(aj − ai)

Γ(aj)

∏

k

Γ(bk)

Γ(bk − ai)
(5.7)

× q+1Fq

(

ai, {1 − bk + ai}1≤k≤q

{1 − aj + ai}1≤j≤q+1,j 6=i

∣

∣

∣

∣

1

x

)

for the series (5.1).
On the other hand, the q+1 functions coming from choosing n or si, 1 ≤ i ≤ q,

as the free variables form linearly independent solutions to the hypergeometric
differential equation

(5.8)

q+1
∏

j=1

(

x
d

dx
+ aj

)

y =

q
∏

k=1

(

x
d

dx
+ bk

)

y
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in a neighborhood of x = 0. Likewise, the q+1 functions (5.5) coming from choosing
ti, 1 ≤ i ≤ q + 1, as the free variables form linearly independent solutions to (5.8)
in a neighborhood of x = ∞.

Example 5.2. For instance, if p = 2 and q = 1 then

2F1

(

a, b

c

∣

∣

∣

∣

x

)

= (−x)−a Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
2F1

(

a, 1 − c+ a

1 − b+ a

∣

∣

∣

∣

1

x

)

(5.9)

+(−x)−b Γ(a− b)Γ(c)

Γ(a)Γ(c− b)
2F1

(

b, 1 − c+ b

1 − a+ b

∣

∣

∣

∣

1

x

)

.

This is entry 9.132.1 of [7]. On the other hand, the two functions

(5.10) 2F1

(

a, b

c

∣

∣

∣

∣

x

)

, x1−c
2F1

(

a+ 1 − c, b+ 1 − c

2 − c

∣

∣

∣

∣

x

)

form a basis of the solutions to the second-order hypergeometric differential equa-
tion

(5.11)

(

x
d

dx
+ a

)(

x
d

dx
+ b

)

y =

(

x
d

dx
+ c

)

y

in a neighborhood of x = 0.

6. Feynman diagram application

In Quantum Field Theory the permanent contrast between experimental mea-
surements and theoretical models has been possible due to the development of novel
and powerful analytical and numerical techniques in perturbative calculations. The
fundamental problem that arises in perturbation theory is the actual calculation of
the loop integrals associated to the Feynman diagrams, whose solution is specially
difficult since these integrals contain in general both ultraviolet (UV) and infrared
(IR) divergences. Using the dimensional regularization scheme, which extends the
dimensionality of space-time by adding a fractional piece (D = 4 − 2ǫ), it is possi-
ble to know the behavior of such divergences in terms of Laurent expansions with
respect to the dimensional regulator ǫ when it tends to zero

As an illustration of the use of method of brackets, the Feynman diagram

(6.1) P2

P1

P3

// a3

��

a1
yyyy

<<yyyy

//

a2

EE
EE

""EE
EE

//

considered in [2] is resolved. In this diagram the propagator (or internal line)
associated to the index a1 has mass m and the other parameters are P 2

1 = P 2
3 = 0

and P 2
2 = (P1 + P3)

2 = s. The D-dimensional representation in Minkowski space
is given by

(6.2) G =

∫

dDq

iπD/2

1

[(P1 + q)2 −m2]
a1 [(P3 − q)2]

a2 [q2]
a3
.
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In order to evaluate this integral, the Schwinger parametrization of (6.2) is consid-
ered (see [8] for details). This is given by

(6.3) G =
(−1)−D/2

∏3
j=1 Γ(aj)

H

with H defined by

(6.4) H =

∞
∫

0

∞
∫

0

∞
∫

0

xa1−1
1 xa2−1

2 xa3−1
3

exp
(

x1m
2
)

exp
(

− x1x2

x1+x2+x3
s
)

(x1 + x2 + x3)
D/2

dx1dx2dx3.

To apply the method of brackets the exponential terms are expanded as

exp
(

x1m
2
)

exp

(

− x1x2

x1 + x2 + x3
s

)

=
∑

n1,n2

φn1,n2
(−1)n1m2n1sn2

xn1+n2

1 xn2

2

(x1 + x2 + x3)
n2
,

and then (6.4) is transformed into

(6.5)
∑

n1,n2

φn1,n2
(−m2)n1sn2

∞
∫

0

∞
∫

0

∞
∫

0

xa1+n1+n2−1
1 xa2+n2−1

2 xa3−1
3

(x1 + x2 + x3)D/2+n2

dx1dx2dx3.

Further expanding

1

(x1 + x2 + x3)D/2+n2

=
∑

n3,n4,n5

φn3,n4,n5
xn3

1 xn4

2 xn5

3

〈

D
2 + n2 + n3 + n4 + n5

〉

Γ(D
2 + n2)

,

and replacing into (6.5) and substituting the resulting integrals by the correspond-
ing brackets yields

H =
∑

{n}

φ{n}(−1)n1m2n1sn2

〈

D
2 + n2 + n3 + n4 + n5

〉

Γ(D
2 + n2)

(6.6)

× 〈a1 + n1 + n2 + n3〉 〈a2 + n2 + n4〉 〈a3 + n5〉 .

This bracket series is now evaluated employing Rules 2.2 and 2.3. Possible choices
for free variables are n1, n2, and n4. The series associated to n2 converges for

| s
m2 | < 1, whereas the series associated to n1, n4 converge for |m2

s | < 1. The
following two representations for G follow from here.

Theorem 6.1. In the region | s
m2 | < 1,

(6.7) H = η2 · 2F1

(

a1 + a2 + a3 − D
2 , a2

D
2

∣

∣

∣

∣

s

m2

)

with η2 defined by

η2 =
(

−m2
)

D
2
−a1−a2−a3

Γ(a2)Γ(a3)Γ
(

a1 + a2 + a3 − D
2

)

Γ
(

D
2 − a2 − a3

)

Γ
(

D
2

) .
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Theorem 6.2. In the region |m2

s | < 1,

H = η1 · 2F1

(

a1 + a2 + a3 − D
2 , 1 + a1 + a2 + a3 −D

1 + a1 + a3 − D
2

∣

∣

∣

∣

m2

s

)

(6.8)

+ η4 · 2F1

(

1 + a2 − D
2 , a2

1 − a1 − a3 + D
2

∣

∣

∣

∣

m2

s

)

with η1, η4 defined by

η1 = s
D
2
−a1−a2−a3

Γ(a3)Γ
(

a1 + a2 + a3 − D
2

)

Γ
(

D
2 − a1 − a3

)

Γ
(

D
2 − a2 − a3

)

Γ (D − a1 − a2 − a3)
,

η4 = s−a2

(

−m2
)

D
2
−a1−a3

Γ(a2)Γ(a3)Γ
(

a1 + a3 − D
2

)

Γ
(

D
2 − a2 − a3

)

Γ
(

D
2 − a2

) .

These two solutions are now specialized to a1 = a2 = a3 = 1. This situation
is specially relevant, since when an arbitrary Feynman diagram is computed, the
indices associated to the propagators are normally 1. Then, with D = 4 − 2ǫ, the
equations (6.7) and (6.8) take the form

(6.9) H = (−m2)−1−ǫΓ(ǫ− 1)2F1

(

1 + ǫ, 1

2 − ǫ

∣

∣

∣

∣

s

m2

)

for | s
m2 | < 1, as well as

(6.10) H = s−1−ǫ Γ(−ǫ)2Γ(1 + ǫ)

Γ(1 − 2ǫ)

(

1 − m2

s

)−2ǫ

−m−2ǫ Γ(ǫ)

ǫs
2F1

(

ǫ, 1

1 − ǫ

∣

∣

∣

∣

m2

s

)

for |m2

s | < 1. Observe that these representations both have a pole at ǫ = 0 of first
order (for the second representation, each of the summands has a pole of second
order which cancel each other).

7. Conclusions and future work

The method of brackets provides a very effective procedure to evaluate definite
integrals over the interval [0,∞). The method is based on a heuristic list of rules on
the bracket series associated to such integrals. In particular, a variety of examples
that illustrate the power of this method has been provided. A rigorous validation
of these rules as well as a systematic study of integrals from Feynman diagrams is
in progress.
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