AN INTEGRAL HIDDEN IN GRADSHTEYN AND RYZHIK

GEORGE BOROS AND VICTOR H. MOLL

Abstract. We provide a closed-form expression for the integral

$$
N_{0,4}(a ; m):=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}
$$

where $m \in \mathbb{N}$ and $a \in(-1, \infty)$:

$$
\begin{aligned}
N_{0,4}(a ; m) & =\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}^{(m+1 / 2,-m-1 / 2)}(a) \\
& =\frac{\pi}{2^{3 m+3 / 2}(a+1)^{m+1 / 2}} \times \sum_{k=0}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}(a+1)^{k} .
\end{aligned}
$$

Here $P_{m}^{(m+1 / 2,-m-1 / 2)}(a)$ is the Jacobi polynomial $P_{m}^{(\alpha, \beta)}(a)$ with parameters $\alpha=m+\frac{1}{2}$ and $\beta=-\left(m+\frac{1}{2}\right)$.

Note. This paper appeared in Jour. Comp. Appl. Math. 106, 1999, 361-368.

1. Introduction

We prove

$$
\begin{equation*}
N_{0,4}(a ; m):=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}(a) \tag{1.1}
\end{equation*}
$$

where $m \in \mathbb{N}, a \in(-1, \infty)$ and

$$
\begin{equation*}
P_{m}(a):=2^{-2 m} \sum_{k=0}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}(a+1)^{k} . \tag{1.2}
\end{equation*}
$$

The polynomial $P_{m}(a)$ is an example of the Jacobi family

$$
\begin{equation*}
P_{m}^{(\alpha, \beta)}(a):=\sum_{k=0}^{m}(-1)^{m-k}\binom{m+\beta}{m-k}\binom{m+k+\alpha+\beta}{k}\left(\frac{a+1}{2}\right)^{k} \tag{1.3}
\end{equation*}
$$

with parameters $\alpha=m+\frac{1}{2}$ and $\beta=-\left(m+\frac{1}{2}\right)$. The parameters α and β, usually constants, dependent on m. For small values of m, the integral $N_{0,4}(a ; m)$ can be computed by a symbolic language or by a reduction formula ((1.5) below) found in [2]. We were surprised not to find an explicit

[^0]evaluation for $N_{0,4}(a ; m)$ in [2] and by the amount of time required to compute it symbolically (e.g. by Mathematica 3.0) for relatively small m (see Section 4). The proof of (1.2) is based on a reduction of $N_{0,4}(a ; m)$ to its hypergeometric form. This result is implicit in [2] 3.252.11, thus motivating the title of this paper.

Integrals of the type

$$
\int_{0}^{\infty} \frac{x^{\mu} d x}{\left(a x^{2}+2 b x+c\right)^{\nu}}
$$

are discussed in section 3.252 of [2]. In most cases $\mu, \nu \in \mathbb{Z}$ or $\mathbb{Z}+\frac{1}{2}$. A notable exception is 3.252 .11 mentioned above, which is equivalent to

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\nu-1} d x}{\left(x^{2}+2 a x+1\right)^{\mu+1 / 2}}=\frac{2^{\mu} \Gamma(1+\mu) B(-\nu+2 \mu+1, \nu) P_{\mu-\nu}^{-\mu}(a)}{\left(a^{2}-1\right)^{\mu / 2}} \tag{1.4}
\end{equation*}
$$

Expressing the associated Legendre function $P_{\nu}^{\mu}(x)$ in its hypergeometric form

$$
P_{\nu}^{\mu}(a)=\frac{1}{\Gamma(1-\mu)}\left(\frac{a+1}{a-1}\right)^{\mu / 2}{ }_{2} F_{1}\left[-\nu, \nu+1 ; 1-\mu ; \frac{1-a}{2}\right]
$$

we obtain

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{\nu-1} d x}{\left(x^{2}+2 a x+1\right)^{\mu+1 / 2}}= & \left(\frac{2}{a+1}\right)^{\mu} B(2 \mu+1-\nu, \nu) \times \\
& { }_{2} F_{1}\left[\nu-\mu, 1+\mu-\nu ; 1+\mu ; \frac{1-a}{2}\right],
\end{aligned}
$$

where $a>-1, \nu>0$, and $\nu-2 \mu<1$.
The only explicit appearance of $N_{0,4}(a ; m)$ in [2] is the recursion 2.161.5, which yields

$$
\begin{align*}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} & =\frac{(4 m-3) a}{4 m\left(a^{2}-1\right)} \int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{4}+2 a x^{2}+1\right)^{m}} \tag{1.5}\\
& +\frac{4 m\left(a^{2}-1\right)+1-2 a^{2}}{4 m\left(a^{2}-1\right)} \int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m}}
\end{align*}
$$

This is useful for small values of m but inefficient for large m. We present a proof of (1.5) in Section 3. This recursion for the integrals $N_{0,4}(a ; m)$ produces a recursion for the polynomials $P_{m}(a)$ ((3.3) below). These polynomials do not satisfy the standard recursion relation ((3.4) below) for the classical Jacobi polynomials.

The explicit evaluation of $N_{0,4}(a ; m)$ is the basic instrument in an algorithm for the integration of even rational functions described in [1].

2. The proof

Theorem 2.1. Let $a \in(-1, \infty)$ and $m \in \mathbb{N}$. Then

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}= & \frac{\pi}{2^{3 m+3 / 2}(a+1)^{m+1 / 2}} \times \\
& \sum_{k=0}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}(a+1)^{k} .
\end{aligned}
$$

Proof. The change of variables $x \rightarrow \sqrt{x}$ and (1.4) produce

$$
\begin{aligned}
N_{0,4}(a ; m) & =2^{m-1 / 2}\left(a^{2}-1\right)^{-m / 2-1 / 4} \Gamma\left(m+\frac{3}{2}\right) B\left(2 m+\frac{3}{2}, \frac{1}{2}\right) P_{m}^{-m-1 / 2}(a) \\
& =2^{m-1 / 2}(a+1)^{-\left(m+\frac{1}{2}\right)} B\left(2 m+\frac{3}{2}, \frac{1}{2}\right)_{2} F_{1}\left[-m, m+1 ; m+\frac{3}{2} ; \frac{1-a}{2}\right] .
\end{aligned}
$$

Now recognize the ${ }_{2} F_{1}$ as a Jacobi polynomial

$$
{ }_{2} F_{1}\left[-m, m+1 ; m+\frac{3}{2} ; \frac{1-a}{2}\right]=\frac{m!\Gamma\left(m+\frac{3}{2}\right)}{\Gamma\left(2 m+\frac{3}{2}\right)} P_{m}^{(m+1 / 2,-m-1 / 2)}(a),
$$

so that

$$
\begin{equation*}
N_{0,4}(a ; m)=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}^{(m+1 / 2,-m-1 / 2)}(a) \tag{2.1}
\end{equation*}
$$

Using (1.3) we obtain

$$
P_{m}^{(m+1 / 2,-m-1 / 2)}(a)=2^{-2 m} \sum_{k=0}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}(a+1)^{k} .
$$

Introduce the notation

$$
N_{n, 4}(a, b, c ; m):=\int_{0}^{\infty} \frac{x^{2 n}}{\left(b x^{4}+2 a x^{2}+c\right)^{m+1}} d x
$$

and set $N_{n, 4}(a ; m):=N_{n, 4}(a, 1,1 ; m)$.
Theorem 2.2. Let $b>0, c>0, a>-\sqrt{b c}, m \in \mathbb{N}$ and $0 \leq n \leq 2 m+1$.
Define

$$
T_{1}(a, b, c ; m, n):=\left(c\left(\frac{c}{b}\right)^{m-n}(8(a+\sqrt{b c}))^{2 m+1}\right)^{1 / 2}
$$

and

$$
T_{2}(m, n):=|m-n|-\left\lfloor\frac{n}{m+1}\right\rfloor .
$$

Then

$$
\begin{aligned}
N_{n, 4}(a, b, c ; m) & =\frac{\pi}{T_{1}(a, b, c ; m, n)} \times \\
& \times \sum_{k=0}^{T_{2}(m, n)} 2^{k}\binom{2 m-2 k}{m-k}\binom{m-n+k}{2 k}\binom{2 k}{k}\binom{m}{k}^{-1}\left(\frac{a}{\sqrt{b c}}+1\right)^{k} .
\end{aligned}
$$

Proof. Let $u=(b / c)^{1 / 4} x$. Then Theorem 2.1 gives an expression for $N_{0,4}(a, b, c ; m)$. The result now follows by differentiation.

Corollary 2.3. Suppose $0 \leq n \leq m$. Then

$$
\begin{aligned}
N_{n, 4}(a ; m) & =\frac{\pi}{2^{3 m+3 / 2}(a+1)^{m+1 / 2}} \times \\
& \times \sum_{k=0}^{m-n} 2^{k}\binom{2 m-2 k}{m-k}\binom{m-n+k}{2 k}\binom{2 k}{k}\binom{m}{k}^{-1}(a+1)^{k} .
\end{aligned}
$$

The sum for the case $m+1 \leq n \leq 2 m+1$ is obtained by the symmetry relation

$$
\begin{equation*}
N_{n, 4}(a ; m)=N_{2 m+1-n, 4}(a ; m) \tag{2.2}
\end{equation*}
$$

which follows from the change of variables $x \rightarrow 1 / x$.

Example 1.

$$
\int_{0}^{\infty} \frac{x^{6} d x}{\left(2 x^{4}+2 x^{2}+3\right)^{11}}=\frac{11 \pi(14229567+4937288 \sqrt{6})}{440301256704(1+\sqrt{6})^{21 / 2}}
$$

3. A RECURSION

In this section we prove (1.5). The argument is based on Hermite's reduction procedure for the indefinite integration of rational functions.

Let $V(x)=x^{4}+2 a x^{2}+1$. Then V and V^{\prime} have no common factor so the Euclidean algorithm produces polynomials B and C such that

$$
\begin{equation*}
-\frac{1}{m}=C V+B V^{\prime} \tag{3.1}
\end{equation*}
$$

Indeed, a simple calculation yields
$B(x)=-\frac{1}{4 m} \frac{1}{a^{2}-1}\left(\left(1-2 a^{2}\right) x-a x^{3}\right)$ and $C(x)=-\frac{1}{m}\left(1+\frac{a}{a^{2}-1} x^{2}\right)$.
Divide (3.1) by V^{m+1} and integrate from 0 to ∞ to produce
$N_{0,4}(a ; m)=\left(1+\frac{1-2 a^{2}}{4 m\left(a^{2}-1\right)}\right) N_{0,4}(a ; m-1)+\frac{(4 m-3) a}{4 m\left(a^{2}-1\right)} N_{1,4}(a ; m-1)$,
which is (1.5). This recursion can be also be written as

$$
\begin{align*}
N_{0,4}(a ; m) & =\left(1+\frac{1-2 a^{2}}{4 m\left(a^{2}-1\right)}\right) N_{0,4}(a ; m-1) \tag{3.2}\\
& -\frac{(4 m-3) a}{8 m(m-1)\left(a^{2}-1\right)} \frac{d}{d a} N_{0,4}(a ; m-2)
\end{align*}
$$

Proposition 3.1. The polynomials $P_{m}(a)$ satisfy

$$
\begin{aligned}
P_{m}(a) & =\frac{(2 m-3)(4 m-3) a}{4 m(m-1)(a-1)} P_{m-2}(a)-\frac{(4 m-3) a(a+1)}{2 m(m-1)(a-1)} \frac{d}{d a} P_{m-2}(a) \\
(3.3) & +\frac{4 m\left(a^{2}-1\right)+1-2 a^{2}}{2 m(a-1)} P_{m-1}(a) .
\end{aligned}
$$

Proof. Use (1.1) in (3.2).
The special values $P_{m}(1)=2^{-2 m}\binom{4 m+1}{2 m}$ and $P_{m}^{\prime}(1)=\frac{m(m+1)}{2 m+3} P_{m}(1)$ computed directly from the integral $N_{0,4}(a ; m)$ show that the right-hand side of (3.3) is, in spite of its appearance, a polynomial in a.

The Jacobi polynomials $P_{m}^{(\alpha, \beta)}(a)$ in (1.3) satisfy the recursion

$$
\begin{array}{r}
2(m+1)(\gamma+m+1)(\gamma+2 m) P_{m+1}^{(\alpha, \beta)}(a) \tag{3.4}\\
=(\gamma+2 m+1)\left(\alpha^{2}-\beta^{2}+a(\gamma+2 m+2)(\gamma+2 m)\right) P_{m}^{(\alpha, \beta)}(a) \\
-2(\alpha+m)(\beta+m)(\gamma+2 m+2) P_{m-1}^{(\alpha, \beta)}(a),
\end{array}
$$

where $\gamma:=\alpha+\beta$. This is not satisfied by $P_{m}(a)$ because in the derivation of (3.4) the parameters α and β are assumed to be independent of m.

4. CPU times

We compute the values of

$$
\begin{equation*}
N_{0,4}(4 ; m)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+8 x^{2}+1\right)^{m+1}} \tag{4.1}
\end{equation*}
$$

for several values of m to illustrate the power of (1.1). The calculations were done on a SUN Ultra 1 using Mathematica 3.0. The table compares the CPU times of the direct calculation (Time 1) with the CPU times (Time $2)$ when formula (1.1) is used. The times of the direct calculation do not improve significantly if the quartic is factored and the integrand expanded in partial fractions.

m	Time 1	Time 2
0	24.6	0.0
25	40.92	0.06
50	224.37	0.06
75	450.17	0.11
100	1369.95	0.16

Table 1. Calculation of $N_{0,4}(4, m)$.

5. An example of degree eight

We use Theorem 2.2 to evaluate the integral

$$
N_{0,8}\left(a_{1}, a_{2} ; m\right):=\int_{0}^{\infty} \frac{d x}{\left(x^{8}+a_{2} x^{6}+2 a_{1} x^{4}+a_{2} x^{2}+1\right)^{m+1}} .
$$

The denominator is a symmetric polynomial $D_{8}(x)$ of degree 8 , i.e. it satisfies $D_{8}(1 / x)=x^{-8} D_{8}(x)$. This type of polynomial is at the center of the algorithm developed in [1].

Theorem 5.1. Let $m \in \mathbb{N}$ and $a_{1}>\max \left\{-a_{2}-1,-\frac{1}{8}\left(a_{2}^{2}+8\right) \times \operatorname{sign}\left(a_{2}+4\right)\right\}$. Then
$N_{0,8}\left(a_{1}, a_{2} ; m\right)=2^{-m} \sum_{j=0}^{2 m+1}\binom{4 m+3}{2 j} \sum_{k=0}^{2 m-j+1}\binom{2 m-j+1}{k} N_{k, 4}\left(a_{2}+4, a_{1}+a_{2}+1,8 ; m\right)$.
Proof. The substitutions $x=\tan \theta$ and $u=2 \theta$ yield

$$
N_{0,8}\left(a_{1}, a_{2} ; m\right)=2 \int_{0}^{\pi / 2} \frac{(1+\cos 2 \theta)^{4 m+3}}{\Phi^{m+1}(\theta)} d \theta
$$

where, with $c=\cos 2 \theta$,
$\Phi(\theta):=(1-c)^{4}+a_{2}(1-c)^{3}(1+c)+2 a_{1}\left(1-c^{2}\right)^{2}+a_{2}(1-c)(1+c)^{3}+(1+c)^{4}$.

Thus, with

$$
\Psi(u):=\left(a_{1}+a_{2}+1\right)+2\left(3-a_{1}\right) \cos ^{2} u+\left(a_{1}-a_{2}+1\right) \cos ^{4} u
$$

we have

$$
\begin{align*}
N_{0,8}\left(a_{1}, a_{2} ; m\right) & =2^{-m-1} \int_{0}^{\pi} \frac{(1+\cos u)^{4 m+3} d u}{\Psi^{m+1}(u)} \\
& =2^{-m-1} \sum_{j=0}^{2 m+1}\binom{4 m+3}{2 j} \int_{0}^{\pi} \frac{\cos ^{2 j} u}{\Psi^{m+1}(u)} d u \tag{5.1}
\end{align*}
$$

where in the last step we have used the fact that

$$
\int_{0}^{\pi} \frac{\cos ^{j} u d u}{\Psi^{m+1}(u)}=0 \text { for odd } j
$$

The substitutions $v=2 u$ and $x=\tan v / 2$ now give

$$
\begin{aligned}
I_{m, \nu} & :=2^{-m-1} \int_{0}^{\pi} \frac{\cos ^{2 j} u d u}{\Psi^{m+1}(u)} \\
& =2^{m+1-j} \int_{0}^{\pi} \frac{(1+\cos 2 u)^{j} d u}{\left[4\left(a_{1}+a_{2}+1\right)+4\left(3-a_{1}\right)(1+\cos 2 u)+\left(a_{1}-a_{2}+1\right)(1+\cos 2 u)^{2}\right]^{m+1}} \\
& =2^{m-j} \int_{0}^{2 \pi} \frac{(1+\cos v)^{j} d v}{\left[\left(a_{1}+3 a_{2}+17\right)-2\left(a_{1}+a_{2}-7\right) \cos v+\left(a_{1}-a_{2}+1\right) \cos ^{2} v\right]^{m+1}} \\
& =2^{m-j+1} \int_{0}^{\pi} \frac{(1+\cos v)^{j} d v}{\left[\left(a_{1}+3 a_{2}+17\right)-2\left(a_{1}+a_{2}-7\right) \cos v+\left(a_{1}-a_{2}+1\right) \cos ^{2} v\right]^{m+1}} \\
& =2^{-m} \int_{0}^{\infty} \frac{\left(x^{2}+1\right)^{2 m-j+1} d x}{U^{m+1}(x)},
\end{aligned}
$$

where $U(x)=\left(a_{1}+a_{2}+1\right) x^{4}+2\left(a_{2}+4\right) x^{2}+8$. Combining (5.1) and (5.2)
yields

$$
\begin{aligned}
N_{0,8}\left(a_{1}, a_{2} ; m\right) & =2^{-m} \sum_{j=0}^{2 m+1}\binom{4 m+3}{2 j} \int_{0}^{\infty} \frac{\left(x^{2}+1\right)^{2 m-j+1} d x}{U^{m+1}(x)} \\
& =2^{-m} \sum_{j=0}^{2 m+1}\binom{4 m+3}{2 j} \sum_{k=0}^{2 m-j+1}\binom{2 m-j+1}{k} \times \int_{0}^{\infty} \frac{x^{2 k} d x}{U^{m+1}(x)} \\
& =2^{-m} \sum_{j=0}^{2 m+1}\binom{4 m+3}{2 j} \sum_{k=0}^{2 m-j+1}\binom{2 m-j+1}{k} N_{k, 4}\left(a_{2}+4, a_{1}+a_{2}+1,8 ; m\right),
\end{aligned}
$$

as claimed.

Example 2.

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{8}+5 x^{6}+14 x^{4}+5 x^{2}+1\right)^{4}}=\frac{(14325195794+2815367209 \sqrt{26}) \pi}{14623232(9+2 \sqrt{26})^{7 / 2}} .
$$

6. Update. January 2009

The paper [1] appeared as [4]. Many proofs of the evaluation of $N_{0,4}(a ; m)$ and the explicit formula for the coefficients of $P_{m}(a)$ have been summarized in [3].

References

[1] G. Boros and V. Moll. On the integration of rational functions. Preprint.
[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 4th edition, 1994.
[3] T. Amdeberhan and V. Moll. A formula for a quartic integral: a survey of old proofs and some new ones. Ramanujan Journal, 18:91-102, 2009.
[4] G. Boros and V. Moll. Landen transformation and the integration of rational functions. Math. Comp., 71:649-668, 2001.

Department of Mathematics, University of New Orleans, New Orleans, LA 70148

E-mail address: gboros@math.uno.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@math.tulane.edu

[^0]: Date: May, 1999
 1991 Mathematics Subject Classification. Primary 33D.
 Key words and phrases. Integrals.

