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Abstract. We provide a closed-form expression for the integral

N0,4(a; m) :=

Z

∞

0

dx

(x4 + 2ax2 + 1)m+1

where m ∈ N and a ∈ (−1,∞):

N0,4(a;m) =
π

2m+3/2(a + 1)m+1/2
P

(m+1/2,−m−1/2)
m (a)

=
π

23m+3/2(a + 1)m+1/2
×

m
X

k=0

2k

 

2m − 2k

m − k

! 

m + k

m

!

(a + 1)k
.

Here P
(m+1/2,−m−1/2)
m (a) is the Jacobi polynomial P

(α,β)
m (a) with pa-

rameters α = m + 1
2

and β = −(m + 1
2
).

Note. This paper appeared in Jour. Comp. Appl. Math. 106, 1999,
361–368.

1. Introduction

We prove

(1.1) N0,4(a;m) :=

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1 =
π

2m+3/2(a + 1)m+1/2
Pm(a),

where m ∈ N, a ∈ (−1,∞) and

(1.2) Pm(a) := 2−2m
m

∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k.

The polynomial Pm(a) is an example of the Jacobi family

(1.3) P (α,β)
m (a) :=

m
∑

k=0

(−1)m−k

(

m + β

m − k

)(

m + k + α + β

k

)(

a + 1

2

)k

with parameters α = m + 1
2 and β = −(m + 1

2 ). The parameters α and
β, usually constants, dependent on m. For small values of m, the integral
N0,4(a;m) can be computed by a symbolic language or by a reduction for-
mula ((1.5) below) found in [2]. We were surprised not to find an explicit
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evaluation for N0,4(a;m) in [2] and by the amount of time required to com-
pute it symbolically (e.g. by Mathematica 3.0) for relatively small m (see
Section 4). The proof of (1.2) is based on a reduction of N0,4(a;m) to its
hypergeometric form. This result is implicit in [2] 3.252.11, thus motivating
the title of this paper.

Integrals of the type

∫

∞

0

xµ dx

(ax2 + 2bx + c)ν

are discussed in section 3.252 of [2]. In most cases µ, ν ∈ Z or Z + 1
2 . A

notable exception is 3.252.11 mentioned above, which is equivalent to

(1.4)

∫

∞

0

xν−1 dx

(x2 + 2ax + 1)µ+1/2
=

2µΓ(1 + µ)B(−ν + 2µ + 1, ν)P−µ
µ−ν(a)

(a2 − 1)µ/2
.

Expressing the associated Legendre function Pµ
ν (x) in its hypergeometric

form

Pµ
ν (a) =

1

Γ(1 − µ)

(

a + 1

a − 1

)µ/2

2F1

[

−ν, ν + 1; 1 − µ; 1−a
2

]

we obtain
∫

∞

0

xν−1 dx

(x2 + 2ax + 1)µ+1/2
=

(

2

a + 1

)µ

B (2µ + 1 − ν, ν) ×

2F1

[

ν − µ, 1 + µ − ν; 1 + µ; 1−a
2

]

,

where a > −1, ν > 0, and ν − 2µ < 1.
The only explicit appearance of N0,4(a;m) in [2] is the recursion 2.161.5,

which yields

(1.5)
∫

∞

0

dx

(x4 + 2ax2 + 1)m+1 =
(4m − 3)a

4m(a2 − 1)

∫

∞

0

x2dx

(x4 + 2ax2 + 1)m

+
4m(a2 − 1) + 1 − 2a2

4m(a2 − 1)

∫

∞

0

dx

(x4 + 2ax2 + 1)m .

This is useful for small values of m but inefficient for large m. We present
a proof of (1.5) in Section 3. This recursion for the integrals N0,4(a;m)
produces a recursion for the polynomials Pm(a) ((3.3) below). These poly-
nomials do not satisfy the standard recursion relation ((3.4) below) for the
classical Jacobi polynomials.

The explicit evaluation of N0,4(a;m) is the basic instrument in an algo-
rithm for the integration of even rational functions described in [1].
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2. The proof

Theorem 2.1. Let a ∈ (−1,∞) and m ∈ N. Then
∫

∞

0

dx

(x4 + 2ax2 + 1)m+1 =
π

23m+3/2(a + 1)m+1/2
×

m
∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k.

Proof. The change of variables x → √
x and (1.4) produce

N0,4(a;m) = 2m−1/2(a2 − 1)−m/2−1/4Γ
(

m + 3
2

)

B
(

2m + 3
2 , 1

2

)

P−m−1/2
m (a)

= 2m−1/2 (a + 1)−(m+
1
2 ) B(2m + 3

2 , 1
2 ) 2F1

[

−m,m + 1;m + 3
2 ; 1−a

2

]

.

Now recognize the 2F1 as a Jacobi polynomial

2F1

[

−m,m + 1;m + 3
2 ; 1−a

2

]

=
m! Γ

(

m + 3
2

)

Γ
(

2m + 3
2

) P (m+1/2,−m−1/2)
m (a),

so that

N0,4(a;m) =
π

2m+3/2(a + 1)m+1/2
P (m+1/2,−m−1/2)

m (a).(2.1)

Using (1.3) we obtain

P (m+1/2,−m−1/2)
m (a) = 2−2m

m
∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k.

�

Introduce the notation

Nn,4(a, b, c;m) :=

∫

∞

0

x2n

(bx4 + 2ax2 + c)m+1
dx

and set Nn,4(a;m) := Nn,4(a, 1, 1;m).

Theorem 2.2. Let b > 0, c > 0, a > −
√

bc, m ∈ N and 0 ≤ n ≤ 2m + 1.
Define

T1(a, b, c;m,n) :=

(

c
(c

b

)m−n (

8(a +
√

bc)
)2m+1

)1/2

and

T2(m,n) := |m − n| − ⌊ n
m+1⌋.

Then

Nn,4(a, b, c;m) =
π

T1(a, b, c;m,n)
×

×
T2(m,n)

∑

k=0

2k

(

2m − 2k

m − k

)(

m − n + k

2k

)(

2k

k

)(

m

k

)

−1 (

a√
bc

+ 1

)k

.



4 GEORGE BOROS AND V. MOLL

Proof. Let u = (b/c)1/4x. Then Theorem 2.1 gives an expression for N0,4(a, b, c;m).
The result now follows by differentiation. �

Corollary 2.3. Suppose 0 ≤ n ≤ m. Then

Nn,4(a;m) =
π

23m+3/2(a + 1)m+1/2
×

×
m−n
∑

k=0

2k

(

2m − 2k

m − k

)(

m − n + k

2k

)(

2k

k

)(

m

k

)

−1

(a + 1)k.

The sum for the case m + 1 ≤ n ≤ 2m + 1 is obtained by the symmetry

relation

Nn,4(a;m) = N2m+1−n,4(a;m)(2.2)

which follows from the change of variables x → 1/x.

Example 1.
∫

∞

0

x6 dx

(2x4 + 2x2 + 3)11
=

11π(14229567 + 4937288
√

6)

440301256704(1 +
√

6)21/2
.

3. A recursion

In this section we prove (1.5). The argument is based on Hermite’s re-
duction procedure for the indefinite integration of rational functions.

Let V (x) = x4 + 2ax2 + 1. Then V and V ′ have no common factor so the
Euclidean algorithm produces polynomials B and C such that

− 1

m
= CV + BV ′.(3.1)

Indeed, a simple calculation yields

B(x) = − 1

4m

1

a2 − 1

(

(1 − 2a2)x − ax3
)

and C(x) = − 1

m

(

1 +
a

a2 − 1
x2

)

.

Divide (3.1) by V m+1 and integrate from 0 to ∞ to produce

N0,4(a;m) =

(

1 +
1 − 2a2

4m(a2 − 1)

)

N0,4(a;m − 1) +
(4m − 3)a

4m(a2 − 1)
N1,4(a;m − 1),

which is (1.5). This recursion can be also be written as

N0,4(a;m) =

(

1 +
1 − 2a2

4m(a2 − 1)

)

N0,4(a;m − 1)(3.2)

− (4m − 3)a

8m(m − 1)(a2 − 1)

d

da
N0,4(a;m − 2).
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Proposition 3.1. The polynomials Pm(a) satisfy

Pm(a) =
(2m − 3)(4m − 3)a

4m(m − 1)(a − 1)
Pm−2(a) − (4m − 3)a(a + 1)

2m(m − 1)(a − 1)

d

da
Pm−2(a)

+
4m(a2 − 1) + 1 − 2a2

2m(a − 1)
Pm−1(a).(3.3)

Proof. Use (1.1) in (3.2). �

The special values Pm(1) = 2−2m
(4m+1

2m

)

and P ′

m(1) = m(m+1)
2m+3 Pm(1) com-

puted directly from the integral N0,4(a;m) show that the right-hand side of
(3.3) is, in spite of its appearance, a polynomial in a.

The Jacobi polynomials P
(α,β)
m (a) in (1.3) satisfy the recursion

2(m + 1)(γ + m + 1)(γ + 2m)P
(α,β)
m+1 (a)(3.4)

= (γ + 2m + 1)
(

α2 − β2 + a(γ + 2m + 2)(γ + 2m)
)

P (α,β)
m (a)

−2(α + m)(β + m)(γ + 2m + 2)P
(α,β)
m−1 (a),

where γ := α + β. This is not satisfied by Pm(a) because in the derivation
of (3.4) the parameters α and β are assumed to be independent of m.

4. CPU times

We compute the values of

N0,4(4;m) =

∫

∞

0

dx

(x4 + 8x2 + 1)m+1(4.1)

for several values of m to illustrate the power of (1.1). The calculations
were done on a SUN Ultra 1 using Mathematica 3.0. The table compares
the CPU times of the direct calculation (Time 1) with the CPU times (Time
2) when formula (1.1) is used. The times of the direct calculation do not
improve significantly if the quartic is factored and the integrand expanded
in partial fractions.

m Time 1 Time 2
0 24.6 0.0
25 40.92 0.06
50 224.37 0.06
75 450.17 0.11
100 1369.95 0.16

Table 1. Calculation of N0,4(4,m).
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5. An example of degree eight

We use Theorem 2.2 to evaluate the integral

N0,8(a1, a2;m) :=

∫

∞

0

dx

(x8 + a2x6 + 2a1x4 + a2x2 + 1)m+1 .

The denominator is a symmetric polynomial D8(x) of degree 8, i.e. it sat-
isfies D8(1/x) = x−8D8(x). This type of polynomial is at the center of the
algorithm developed in [1].

Theorem 5.1. Let m ∈ N and a1 > max
{

−a2 − 1,−1
8 (a2

2 + 8) × sign(a2 + 4)
}

.
Then

N0,8(a1, a2;m) = 2−m
2m+1
∑

j=0

(

4m + 3

2j

) 2m−j+1
∑

k=0

(

2m − j + 1

k

)

Nk,4(a2 + 4, a1 + a2 + 1, 8;m).

Proof. The substitutions x = tan θ and u = 2θ yield

N0,8(a1, a2;m) = 2

∫ π/2

0

(1 + cos 2θ)4m+3

Φm+1(θ)
dθ,

where, with c = cos 2θ,

Φ(θ) := (1 − c)4 + a2(1 − c)3(1 + c) + 2a1(1 − c2)2 + a2(1 − c)(1 + c)3 + (1 + c)4.

Thus, with

Ψ(u) := (a1 + a2 + 1) + 2(3 − a1) cos2 u + (a1 − a2 + 1) cos4 u,

we have

N0,8(a1, a2;m) = 2−m−1

∫ π

0

(1 + cos u)4m+3 du

Ψm+1(u)

= 2−m−1
2m+1
∑

j=0

(

4m + 3

2j

)
∫ π

0

cos2j u

Ψm+1(u)
du,(5.1)

where in the last step we have used the fact that

∫ π

0

cosj u du

Ψm+1(u)
= 0 for odd j.



AN INTEGRAL HIDDEN IN GRADSHTEYN AND RYZHIK 7

The substitutions v = 2u and x = tan v/2 now give

(5.2)

Im,ν := 2−m−1

∫ π

0

cos2j u du

Ψm+1(u)

= 2m+1−j

∫ π

0

(1 + cos 2u)j du

[4(a1 + a2 + 1) + 4(3 − a1)(1 + cos 2u) + (a1 − a2 + 1)(1 + cos 2u)2]m+1

= 2m−j

∫ 2π

0

(1 + cos v)j dv

[(a1 + 3a2 + 17) − 2(a1 + a2 − 7) cos v + (a1 − a2 + 1) cos2 v]m+1

= 2m−j+1

∫ π

0

(1 + cos v)j dv

[(a1 + 3a2 + 17) − 2(a1 + a2 − 7) cos v + (a1 − a2 + 1) cos2 v]m+1

= 2−m

∫

∞

0

(x2 + 1)2m−j+1 dx

Um+1(x)
,

where U(x) = (a1 + a2 + 1)x4 + 2(a2 + 4)x2 + 8. Combining (5.1) and (5.2)
yields

N0,8(a1, a2;m) = 2−m
2m+1
∑

j=0

(

4m + 3

2j

)
∫

∞

0

(x2 + 1)2m−j+1 dx

Um+1(x)

= 2−m
2m+1
∑

j=0

(

4m + 3

2j

) 2m−j+1
∑

k=0

(

2m − j + 1

k

)

×
∫

∞

0

x2k dx

Um+1(x)

= 2−m
2m+1
∑

j=0

(

4m + 3

2j

) 2m−j+1
∑

k=0

(

2m − j + 1

k

)

Nk,4(a2 + 4, a1 + a2 + 1, 8;m),

as claimed. �

Example 2.
∫

∞

0

dx

(x8 + 5x6 + 14x4 + 5x2 + 1)4
=

(14325195794 + 2815367209
√

26)π

14623232(9 + 2
√

26)7/2
.

6. Update. January 2009

The paper [1] appeared as [4]. Many proofs of the evaluation of N0,4(a;m)
and the explicit formula for the coefficients of Pm(a) have been summarized
in [3].
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