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Abstract. Expected values of powers of the radial coordinate in arbitrary
hydrogen states are given, in the quantum case, by an integral involving the
associated Laguerre function. The method of brackets is used to evaluate the

integral in closed-form and to produce an expression for this average value as
a finite sum.

1. Introduction

The computation of the expectation 〈rk〉 of the electron for atoms with a single
electron is a standard problem in Quantum Mechanics, see [11, 14]. For a given
energy state n, the problem is expressed as

(1.1) 〈rk〉 =

∫ ∞

0

R2
nℓ(r)r

k+2 dr,

where Rnℓ(r) is the radial solution of the Schrödinger equation for the hydrogen
atom. Conditions on the parameters n, ℓ, k are determined by the convergence of
this integral.

In the non-relativistic situation, the solution is given in terms of the Hahn poly-
nomials [2]:

(1.2) h(α,β)
m (x,N) =

(1−N)m(β + 1)m
m!

3F2

(

−m, α+ β +m+ 1, −x

β + 1, 1−N

∣

∣

∣

∣

1

)

.

In particular, these expectations are given in terms of the Chebyshev polynomials
of discrete variables [10, 12]

(1.3) tm(x,N) = h(0,0)
m (x,N)

in the form

(1.4) 〈rk〉 =
1

2n
(2µ)−ktk+1(n− ℓ− 1,−2ℓ− 1), when k = −1, 0, 1, 2, · · ·

and

(1.5) 〈rk〉 =
1

2n
(2µ)−kt−k−2(n− ℓ− 1,−2ℓ− 1), when k = −2, −3, · · · ,−2ℓ− 2.
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The parameters are µ = Z/na0 with a0 = ~
2/me2 the Bohr radius and Z is the

nuclear charge. The constants m and e are the mass and charge of the electron,
respectively.

The identity

(1.6) tk(n− ℓ− 1,−2ℓ− 1) =
Γ(2ℓ+ k + 2)

Γ(2ℓ+ 2)
3F2

(

−k, k + 1, −n+ ℓ+ 1

1, 2ℓ+ 2

∣

∣

∣

∣

1

)

follows from (1.2). Then (1.4) becomes

(1.7) 〈rk〉nℓ =
1

2n(2µ)k
Γ(2ℓ+ k + 3)

Γ(2ℓ+ 2)
3F2

(

−1− k, k + 2, −n+ ℓ+ 1

1, 2ℓ+ 2

∣

∣

∣

∣

1

)

,

for k = −1, 0, 1, 2, · · · and (1.5)

(1.8) 〈rk〉nℓ =
1

2n(2µ)k
Γ(2ℓ− k)

Γ(2ℓ+ 2)
3F2

(

−2 + k, −k + 3, −n+ ℓ+ 1

1, 2ℓ+ 2

∣

∣

∣

∣

1

)

,

for k = −2, −3, · · · ,−2ℓ− 2, where the dependence upon the parameters n and ℓ
have been made explicit.

In the quantum case, the radial component of the wave function for a hydrogen
atom with nuclear charge Z is characterized by two quantum numbers: n the
principal quantum number and ℓ the orbital number. The corresponding normalized
radial function is

(1.9) Rnℓ(r) = Anℓ(2µr)
ℓexp(−µr)L2ℓ+1

n−ℓ−1(2µr)

where the normalization constant is

(1.10) Anℓ =

√

(2µ)3

2n

(n− ℓ− 1)!

(n+ ℓ)!

and

(1.11) Lα
m(x) =

Γ(α+m+ 1)

Γ(m+ 1)Γ(1 + α)
1F1

(

−m

1 + α

∣

∣

∣

∣

x

)

is the associated Laguerre function; see [8, formula 8.972.1]. The expected value of
a power of the radial coordinate is given by

(1.12)
〈

rk
〉

nℓ
= (2µ)2ℓA2

nℓ

∫ ∞

0

r2+2ℓ+ke−2µr
[

L2ℓ+1
n−ℓ−1(2µr)

]2
dr,

with n ∈ N, 0 ≤ ℓ ≤ n− 1. and k ∈ Z.

The goal of the work is to compute the integral in (1.12) by the method of

brackets, to illustrate its flexibility. The reader will find in [1, 3, 4, 5, 6, 7, 9]
a collection of examples of definite integrals evaluated by this method. The basic
procedure is described in Section 3.

The examples presented here are to be considered as the beginning of a series of
calculations of integrals related to the hydrogen atom. These include the evaluation
of the integral

(1.13) Jαβ
nms =

∫ ∞

0

e−xxα+sLα
n(x)L

β
m(x) dx

given by S. K. Suslov and B. Trey [13]. The method of brackets provides an al-
ternative method of proof that only uses the hypergeometric representation of the
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Laguerre function. The method can also be used to discuss the relativistic situation.
Details will appear elsewhere.

The reductions of the formulas discussed here uses basic properties of the gamma
function, such as

(1.14) Γ(a+ n) = Γ(a) (a)n and (a)−n =
(−1)n

(1− a)n
for a ∈ R and n ∈ N.

Here (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol.

2. A direct evaluation

This section presents a direct evaluation of the integral

(2.1)
〈

rk
〉

nℓ
= (2µ)2ℓA2

nℓ

∫ ∞

0

r2+2ℓ+ke−2µr
[

L2ℓ+1
n−ℓ−1(2µr)

]2
dr.

given in (1.12). The proof is based on some identities for the associated Laguerre
function appearing in the integrand. The methods presented here are then com-
pared with the evaluation by the method of brackets explained in the next section.

The first identity used to modify the integrand appears in [8, formula 8.976.3]

(2.2) [Lα
m(x)]

2
=

Γ(α+m+ 1)

22mΓ(m+ 1)

m
∑

s=0

(

2m− 2s

m− s

)

Γ(2s+ 1)

Γ(α+ s+ 1)Γ(s+ 1)
L2α
2s (2x).

Therefore

(2.3)
〈

rk
〉

nℓ
= (2µ)2ℓA2

nℓ

Γ(ℓ+ n+ 1)

22(n−ℓ−1)Γ(n− ℓ)

×

n−ℓ−1
∑

s=0

(

2(n− ℓ− 1− s)

n− ℓ− 1− s

)

Γ(2s+ 1)

Γ(2ℓ+ 2 + s)Γ(s+ 1)
Gℓ,k,s(µ),

where

(2.4) Gℓ,k,s(µ) =

∫ ∞

0

r2+2ℓ+ke−2µrL
2(2ℓ+1)
2s (4µr) dr.

To obtain an expression for Gℓ,k,s(µ), the representation

(2.5) La
n(x) =

Γ(a+ n+ 1)

Γ(n+ 1)Γ(1 + a)
1F1

(

−n

1 + a

∣

∣

∣

∣

x

)

for the Laguerre function (see [8, formula 8.972.1]) is used.

Theorem 2.1. The integral Gℓ,k,s(µ) is given by

(2.6) Gℓ,k,s(µ) =
Γ(4ℓ+ 2s+ 3)Γ(2ℓ+ k + 3)

Γ(2s+ 1)Γ(4ℓ+ 3)(2µ)2ℓ+k+3 2F1

(

−2s, 2ℓ+ k + 3

4ℓ+ 3

∣

∣

∣

∣

2

)

.

Proof. The hypergeometric representation (2.5) shows that

(2.7) L
2(2ℓ+1)
2s (4µr) =

Γ(4ℓ+ 2s+ 3)

Γ(2s+ 1)Γ(4ℓ+ 3)
1F1

(

−2s

4ℓ+ 3

∣

∣

∣

∣

4µr

)

.
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Expanding the hypergeometric function gives

Gℓ,k,s(µ) =
Γ(4ℓ+ 2s+ 3)

Γ(2s+ 1)Γ(4ℓ+ 3)

∫ ∞

0

2s
∑

j=0

(−2s)j
(4ℓ+ 3)j

(4µr)j

j!
r2ℓ+2+ke−2µr dr

=
Γ(4ℓ+ 2s+ 3)

Γ(2s+ 1)Γ(4ℓ+ 3)

2s
∑

j=0

(−2s)j
(4ℓ+ 3)j j!

(4µ)j
∫ ∞

0

r2ℓ+2+k+je−2µr dr

=
Γ(4ℓ+ 2s+ 3)

Γ(2s+ 1)Γ(4ℓ+ 3)

2s
∑

j=0

(−2s)j(4µ)
j

(4ℓ+ 3)j j!

Γ(2ℓ+ k + j + 3)

(2µ)2ℓ+k+j+3

=
Γ(4ℓ+ 2s+ 3)

Γ(2s+ 1)Γ(4ℓ+ 3)(2µ)2ℓ+k+3

2s
∑

j=0

(−2s)j2
j

(4ℓ+ 3)j j!
Γ(2ℓ+ k + j + 3)

=
Γ(4ℓ+ 2s+ 3)Γ(2ℓ+ k + 3)

Γ(2s+ 1)Γ(4ℓ+ 3)(2µ)2ℓ+k+3

2s
∑

j=0

(−2s)j(2ℓ+ k + 3)j
(4ℓ+ 3)j j!

2j

=
Γ(4ℓ+ 2s+ 3)Γ(2ℓ+ k + 3)

Γ(2s+ 1)Γ(4ℓ+ 3)(2µ)2ℓ+k+3

∞
∑

j=0

(−2s)j(2ℓ+ k + 3)j
(4ℓ+ 3)j j!

2j

=
Γ(4ℓ+ 2s+ 3)Γ(2ℓ+ k + 3)

Γ(2s+ 1)Γ(4ℓ+ 3)(2µ)2ℓ+k+3 2F1

(

−2s, 2ℓ+ k + 3

4ℓ+ 3

∣

∣

∣

∣

2

)

.

This is the stated form for Gℓ,k,s(µ). �

Note 2.2. Observe that s ∈ N, so the hypergeometric function in the expression for
Gℓ,k,s(µ) is actually a polynomial in its last variable. Thus, there are no convergence
issues.

The expression for Gℓ,k,s(µ) and (2.3) are used to produce the next result (after
the change s 7→ n− ℓ− 1− s).

Corollary 2.3. For n = 1, 2, · · · , ℓ = 0, 1, · · · , n−1 and k ∈ Z with 2ℓ+k+3 > 0.
The moments of the hydrogen atom are given by

(2.8) 〈rk〉nℓ =
Γ(2ℓ+ k + 3)(2n+ 2ℓ)!

n22n−2ℓ−1(4ℓ+ 2)!(2µ)k(n+ ℓ)!(n− ℓ− 1)!
n−ℓ−1
∑

s=0

(

n+ℓ
s

)(

n−ℓ−1
s

)

(

2n+2ℓ
2s

) 2F1

(

−2(n− ℓ− 1− s), 2ℓ+ k + 3

4ℓ+ 3

∣

∣

∣

∣

2

)

.

Note 2.4. The restriction 2ℓ + k + 3 > 0 avoids the singularities of the gamma
factor Γ(2ℓ+k+3). Also observe that the first entry in the series 2F1 in the answer
is a negative integer, therefore the series reduces to a finite sum.

3. The method of brackets

The evaluation of the integral giving the mean value 〈rk〉 (2.1) presented in
the previous section, used the relation (2.2) in a fundamental way. A method to
evaluate integrals over the half line [0, ∞), based on a small number of rules has
been developed in [6, 7]. This method of brackets is described next. The heuristic
rules are currently being placed on solid ground [1]. The reader will find in [4, 5, 3]
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a large collection of evaluations of definite integrals that illustrate the power and
flexibility of this method.

For a ∈ R, the symbol

(3.1) 〈a〉 7→

∫ ∞

0

xa−1 dx

is the bracket associated to the (divergent) integral on the right. The symbol

(3.2) φn :=
(−1)n

Γ(n+ 1)

is called the indicator associated to the index n. The notation φi1i2···ir , or simply
φ12···r, denotes the product φi1φi2 · · ·φir .

Rules for the production of bracket series

Rule P1. Power series appearing in the integrand are converted into bracket series

by the procedure

(3.3)

∞
∑

n=0

anx
αn+β−1 7→

∑

n≥0

an〈αn+ β〉.

Rule P2. For α ∈ C, the multinomial power (a1 + a2 + · · · + ar)
α is assigned the

r-dimensional bracket series

(3.4)
∑

n1≥0

∑

n2≥0

· · ·
∑

nr≥0

φn1 n2 ···nr
an1

1 · · · anr

r

〈−α+ n1 + · · ·+ nr〉

Γ(−α)
.

Rules for the evaluation of a bracket series

Rule E1. The one-dimensional bracket series is assigned the value

(3.5)
∑

n≥0

φnf(n)〈an+ b〉 =
1

|a|
f(n∗)Γ(−n∗),

where n∗ is obtained from the vanishing of the bracket; that is, n∗ solves an+b = 0.
This is precisely the Ramanujan’s Master Theorem.

The next rule provides a value for multi-dimensional bracket series of index 0,
that is, the number of sums is equal to the number of brackets.

Rule E2. Assume the matrix A = (aij) is non-singular, then the assignment is
∑

n1≥0

· · ·
∑

nr≥0

φn1···nr
f(n1, · · · , nr)〈a11n1+· · ·+a1rnr+c1〉 · · · 〈ar1n1+· · ·+arrnr+cr〉

=
1

|det(A)|
f(n∗

1, · · ·n
∗
r)Γ(−n∗

1) · · ·Γ(−n∗
r)

where {n∗
i } is the (unique) solution of the linear system obtained from the vanishing

of the brackets. There is no assignment if A is singular.

Rule E3. Each representation of an integral by a bracket series has associated an
index of the representation via

(3.6) index = number of sums − number of brackets.

It is important to observe that the index is attached to a specific representation
of the integral and not just to integral itself. The experience obtained by the
authors using this method suggests that, among all representations of an integral
as a bracket series, the one with minimal index should be chosen.
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The value of a multi-dimensional bracket series of positive index is obtained by
computing all the contributions of maximal rank by Rule E2. These contributions
to the integral appear as series in the free parameters. Series converging in a
common region are added and divergent series are discarded. Any series producing
a non-real contribution is also discarded. There is no assignment to a bracket series
of negative index.

4. The evaluation of the expectations. A first bracket calculation

This section describes the evaluation of the integral

(4.1) In,ℓ,k(µ) :=

∫ ∞

0

r2+2ℓ+ke−2µr
[

L2ℓ+1
n−ℓ−1(2µr)

]2
dr.

that appeared in (1.12) by the method of brackets. The expected value of a power
of the radial coordinate is then given by

(4.2)
〈

rk
〉

nℓ
= (2µ)2ℓA2

nℓIn,ℓ,k(µ).

This integral can be scaled to

(4.3) In,ℓ,k(µ) =
1

(2µ)3+2ℓ+k

∫ ∞

0

t2+2ℓ+ke−t
[

L2ℓ+1
n−ℓ−1(t)

]2
dt.

This does not appear in the table [8]. The closest entry is 7.414.10:

(4.4)

∫ ∞

0

e−bxx2a [La
n(x)]

2
dx =

22aΓ
(

a+ 1
2

)

Γ
(

n+ 1
2

)

π(n!)2b2a+1

× Γ(a+ n+ 1) 2F1

(

−n, a+ 1
2

1
2 − n

∣

∣

∣

∣

(

1−
2

b

)2
)

.

Note 4.1. In the evaluation of (4.1), it is convenient to write it as

(4.5) In,ℓ,k:A,B,C(µ) :=

∫ ∞

0

r2+2ℓ+ke−ArL2ℓ+1
n−ℓ−1(Br)L2ℓ+1

n−ℓ−1(Cr) dr

and then consider the limiting value as A, B, C tend to 2µ.

The computation of (4.3) described in this section is obtained without any fur-
ther identities for the Laguerre function. Next section describes the computation
of the function Gℓ,k,s(µ), defined in (2.4).

The first step is to compute a series representation for the factors in the inte-
grand.

Lemma 4.2. The functions in the integrand of (4.1) have series given by

(4.6) e−ax =
∑

n1

φn1
an1xn1

and

(4.7) Lα
m(x) = Γ(α+ 1 +m)

∑

n2

φn2

xn2

Γ(1 +m− n2)Γ(1 + α+ n2)
.



MOMENTS OF HYDROGEN ATOM 7

Proof. The series of the exponential function is elementary. Indeed,

e−ax =
∑

n1≥0

(−a)n1

n1!
xn1 =

∑

n1≥0

(−1)n1

n1!
(ax)n1 =

∑

n1

φn1
(ax)n1 .

To evaluate the series of the Laguerre function, treat m as a real non-integer pa-
rameter, and observe that

Lα
m(x) =

Γ(α+ 1 +m)

Γ(α+ 1)Γ(m+ 1)

∞
∑

n2=0

(−m)n2

(α+ 1)n2

xn2

n2!

=
Γ(α+ 1 +m)

Γ(m+ 1)

∞
∑

n2=0

Γ(n2 −m)

Γ(−m)Γ(α+ 1 + n2)

xn2

n2!
.

The series for the Laguerre function now follows from the identity

(4.8)
Γ(n2 −m)

Γ(−m)
= (−1)n2

Γ(1 +m)

Γ(1 +m− n2)

valid for n2 ∈ N and m 6∈ N. �

The series given in Lemma 4.2 are now used directly to evaluate the integral
(4.1). This gives

In,ℓ,k;A,B,C(µ) =

∫ ∞

0

r2+2ℓ+k

[

∑

n1

An1φn1
rn1

]

×

[

∑

n2

Γ(ℓ+ n+ 1)

Γ(n− ℓ− n2)Γ(2ℓ+ 2 + n2)
φn2

Bn2rn2

]

×

[

∑

n3

Γ(ℓ+ n+ 1)

Γ(n− ℓ− n3)Γ(2ℓ+ 2 + n3)
φn3

Cn3rn3

]

dr

=
∑

n1,n2,n3

∫ ∞

0

r2+2ℓ+k+n1+n2+n3 drAn1Bn2Cn3φn1,n2,n3

×
Γ2(ℓ+ n+ 1)

Γ(n− ℓ− n2)Γ(2ℓ+ 2 + n2)Γ(n− ℓ− n3)Γ(2ℓ+ 2 + n3)

=
∑

n1,n2,n3

〈n1 + n2 + n3 + 3 + 2ℓ+ k〉An1Bn2Cn3φn1,n2,n3

×
Γ2(ℓ+ n+ 1)

Γ(n− ℓ− n2)Γ(2ℓ+ 2 + n2)Γ(n− ℓ− n3)Γ(2ℓ+ 2 + n3)
.

This intermediate result is stated next.

Proposition 4.3. A bracket series for the integral In,ℓ,k;A,B,C(µ) is given by

In,ℓ,k;A,B,C(µ) =
∑

n1,n2,n3

〈n1 + n2 + n3 + 3 + 2ℓ+ k〉An1Bn2Cn3φn1,n2,n3

×
Γ2(ℓ+ n+ 1)

Γ(n− ℓ− n2)Γ(2ℓ+ 2 + n2)Γ(n− ℓ− n3)Γ(2ℓ+ 2 + n3)
.
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The bracket series above contains one bracket and three indices, thus it expected
that the method will produce a double series as an expression for In,ℓ,k;A,B,C(µ).
The vanishing of the bracket gives

(4.9) n1 + n2 + n3 = −3− 2ℓ− k,

showing the two free indices.

Solving for n3. Replacing n3 = −n1 − n2 − t, with t = 2ℓ + k + 3, in the bracket
series yields the expression

In,ℓ,k;A,B,C(µ) =
Γ2(n+ ℓ+ 1)

Ct

∞
∑

n1,n2=0

Γ(n1 + n2 + t)
(

−A
C

)n1
(

−B
C

)n2

Γ(n− ℓ− n2)Γ(2ℓ+ 2 + n2)Γ(n1 + n2 + s)Γ(−1− k − n1 − n2)n1!n2!

with s = n+ ℓ+ 3 + k. Using (1.14) yields

In,ℓ,k;A,B,C(µ) =
Γ2(n+ ℓ+ 1)Γ(t)

CtΓ(n− ℓ)Γ(2ℓ+ 2)Γ(s)Γ(−1− k)
∞
∑

n1,n2=0

(t)n1+n2
(1− n+ ℓ)n2

(k + 2)n1+n2

(2ℓ+ 2)n2
(s)n1+n2

n1!n2!
(−1)n2

(

A

C

)n1
(

B

C

)n2

.

Then use

(4.10) (b)n1+n2
= (b)n2

(b+ n2)n1

to produce

In,ℓ,k;A,B,C(µ) =
Γ2(n+ ℓ+ 1)Γ(t)

CtΓ(n− ℓ)Γ(2ℓ+ 2)Γ(s)Γ(−1− k)
∞
∑

n1,n2=0

(t)n2
(t+ n2)n1

(1− n+ ℓ)n2
(k + 2)n2

(k + 2 + n2)n1

(2ℓ+ 2)n2
(s)n2

(s+ n2)n1
n1!n2!

(−1)n2

(

A

C

)n1
(

B

C

)n2

.

The sum corresponding to the index n1, which appears only in 3 places, is chosen
as the internal sum. This yields

In,ℓ,k;A,B,C(µ) =
Γ2(n+ ℓ+ 1)Γ(t)

CtΓ(n− ℓ)Γ(2ℓ+ 2)Γ(s)Γ(−1− k)
∞
∑

n2=0

(t)n2
(k + 2)n2

(1− n+ ℓ)n2

(2ℓ+ 2)n2
(s)n2

n2!

(

−
B

C

)n2

∞
∑

n1=0

(t+ n2)n1
(k + 2 + n2)n1

(s+ n2)n1
n1!

(

A

C

)n1

.

The inner sum is now identified as a hypergeometric function to produce

In,ℓ,k;A,B,C(µ) =
Γ2(n+ ℓ+ 1)Γ(t)

CtΓ(n− ℓ)Γ(2ℓ+ 2)Γ(s)Γ(−1− k)
∞
∑

n2=0

(t)n2
, (k + 2)n2

(1− n+ ℓ)n2

(2ℓ+ 2)n2
(s)n2

n2!

(

−
B

C

)n2

2F1

(

t+ n2, 2 + k + n2

s+ n2

∣

∣

∣

∣

A

C

)
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Note 4.4. The same procedure can be used to treat the cases obtained by solving
for n1 or n2 in the equation (4.9). The corresponding integrals are

I
(1)
n,ℓ,k;A,B,C(µ) =

Γ2(n+ ℓ+ 1)Γ(t)

AtΓ2(n− ℓ)Γ2(2ℓ+ 2)
∞
∑

n2=0

(t)n2
(1− n+ ℓ)n2

(2ℓ+ 2)n2
n2!

(

B

A

)n2

2F1

(

t+ n2, 1− n+ ℓ

2ℓ+ 2

∣

∣

∣

∣

C

A

)

and

I
(2)
n,ℓ,k;A,B,C(µ) =

Γ2(n+ ℓ+ 1)Γ(t)

AtΓ2(n− ℓ)Γ2(2ℓ+ 2)
∞
∑

n3=0

(t)n3,(1− n+ ℓ)n3

(2ℓ+ 2)n3
n3!

(

C

A

)n3

2F1

(

t+ n3, 1− n+ ℓ

2ℓ+ 2

∣

∣

∣

∣

B

A

)

At this point, the parameters A, B, C are replaced by the value 2µ, in order to
continue the evaluation. This gives

In,ℓ,k(µ) =
Γ2(n+ ℓ+ 1)Γ(t)

(2µ)tΓ(n− ℓ)Γ(2ℓ+ 2)Γ(s)Γ(−1− k)
∞
∑

n2=0

(t)n2
(k + 2)n2

(1− n+ ℓ)n2

(2ℓ+ 2)n2
(s)n2

n2!
(−1)n2

2F1

(

t+ n2, 2 + k + n2

s+ n2

∣

∣

∣

∣

1

)

.

Observe that 1− n+ ℓ is a negative integer, so this is actually a finite sum. Using
Gauss’ evaluation

(4.11) 2F1

(

a, b

c

∣

∣

∣

∣

1

)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, for Re c− a− b > 0,

and expressing the resulting gamma factors in terms of Pochhammer symbols to
obtain

In,ℓ,k(µ) =
Γ(n+ ℓ+ 1)Γ(2ℓ+ k + 3)Γ(n− ℓ− k − 2)

(2µ)2ℓ+k+3Γ2(n− ℓ)Γ(2ℓ+ 2)Γ(−1− k)
∞
∑

n2=0

(k + 2)n2
(1− n+ ℓ)n2

(2ℓ+ k + 3)n2

(2ℓ+ 2)n2
(ℓ+ k + 3− n)n2

n2!
.

The final step identifies this series as a hypergeometric series to produce:

In,ℓ,k(µ) =
Γ(n+ ℓ+ 1)Γ(2ℓ+ k + 3)Γ(n− ℓ− k − 2)

(2µ)2ℓ+k+3Γ2(n− ℓ)Γ(2ℓ+ 2)Γ(−1− k)

3F2

(

k + 2, 1 + ℓ− n, 2ℓ+ k + 3

2ℓ+ 2, l + k + 3− n

∣

∣

∣

∣

1

)

.

The results of this section are summarized in the next statement.

Theorem 4.5. For n, ℓ, k as above,

〈rk〉nℓ =
Γ(2ℓ+ k + 3)Γ(n− ℓ− k − 2)

2n(2µ)kΓ(n− ℓ)Γ(2ℓ+ 2)Γ(−1− k)

3F2

(

k + 2, 1 + ℓ− n, 2ℓ+ k + 3

2ℓ+ 2, l + k + 3− n

∣

∣

∣

∣

1

)

.
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5. The evaluation of the expectations. A second approach

The moment 〈rk〉nℓ has been expressed in (2.3) as a finite sum values of the
integral

(5.1) Gℓ,k,s(µ) =

∫ ∞

0

r2+2ℓ+ke−2µrL
2(2ℓ+1)
2s (4µr) dr

where the index s is an integer varying from 0 to n− ℓ− 1. Corollary 2.3 provides
an expression for 〈rk〉nℓ as a finite sum of values of the hypergeometric function

2F1 evaluated at the argument 2. The hypergeometric terms appearing in the
mentioned representation are actually finite sums, so the convergence of the series
is not an issue. An alternative form is derived in this section that extends the range
of validity of Gℓ,k,s(µ) to a larger range for the parameter s.

The goal is to produce a representation of the series for the Laguerre polynomials,
given initially by

(5.2) Lα
n(x) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)
1F1

(

−n

α+ 1

∣

∣

∣

∣

x

)

.

This series is now written in a form suitable for the application of the method of
brackets:

Lα
n(x) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞
∑

k1=0

(−n)k1

(α+ 1)k1

xk1

k1!

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞
∑

k1=0

(−1)k1(−n)k1
(−α)−k1

xk1

k1!

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∑

k1

φ1(−n)k1
(−α)k1

xk1

=
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∑

k1

φ1Γ(−n+ k1)Γ(−α− k1)x
k1 .

To produce a bracket series representation of the last expression, observe that

(5.3) Γ(β) =
∑

ℓ

φℓ〈β + ℓ〉

and this leads to

(5.4) Lα
n(x) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)
∑

k1,k2k3

φ123〈−n+ k1 + k2〉 〈−α− k1 + k3〉x
k1 .

The vanishing of the brackets provides two representations for the Laguerre func-
tion, denoted by Tj .

Case 1. Take k1 as a free index. Then k∗2 = n − k1 and k∗3 = k1 + α yields the
expression

(5.5) T1 =
Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)

∞
∑

k1=0

(−n)k1

(α+ 1)k1

xk1

k1!
.

This is the original series for Lα
n(x).
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Case 2. Take k2 as a free index. Then k∗1 = n− k2 and k∗3 = α+ n− k2 yields

(5.6) T2 =
Γ(α+ n+ 1)xn

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∞
∑

k2=0

Γ(−n+k2)Γ(−α−n+k2)
(−x)−k2

k2!
.

Case 3. Taking k3 as a free index does not produce a representation for Lα
n(x).

The next step is to use the T2 representation to evaluate the integral Gℓ,k,s(µ).

By equation (5.6), the expression for Lα
n(x) is now written as

(5.7) Lα
n(x) =

Γ(α+ n+ 1)xn

Γ(n+ 1)Γ(α+ 1)Γ(−n)Γ(−α)

∞
∑

j=0

φjΓ(−n+ j)Γ(−α− n+ j)x−j .

Using this representation in (5.1) produces

Gℓ,k,s(µ) =
Γ(4ℓ+ 3 + 2s)(4µ)2s

Γ(2s+ 1)Γ(4ℓ+ 3)Γ(−2s)Γ(−4ℓ− 2)
∞
∑

j=0

φjΓ(−2s+ j)Γ(−4ℓ− 2− 2s+ j)(4µ)−j

∫ ∞

0

r2+2ℓ+k+2s−je−2µr dr.

Evaluating the last integral in terms of the gamma function and simplifying pro-
duces a proof of the next result.

Theorem 5.1. The integral

(5.8) Gℓ,k,s(µ) =

∫ ∞

0

r2+2ℓ+ke−2µrL
2(2ℓ+1)
2s (4µr) dr

is given by

Gℓ,k,s(µ) =
4s

(2µ)3+2ℓ+k

Γ(3 + 2ℓ+ k + 2s)

Γ(2s+ 1)
2F1

(

−2s, −2s− 4ℓ− 2

−2− 2ℓ− k − 2s

∣

∣

∣

∣

1

2

)

.

6. A couple of examples

The method of brackets has been used here to produce analytic expressions for
the mean radius

(6.1)
〈

rk
〉

nℓ
= (2µ)2ℓA2

nℓ

∫ ∞

0

r2+2ℓ+ke−2µr
[

L2ℓ+1
n−ℓ−1(2µr)

]2
dr,

stated first in (1.12). The physically relevant parameters are

(6.2) n = 0, 1, 2, · · · , 0 ≤ ℓ ≤ n− 1 and k ∈ R.

The expressions include

(6.3) 〈rk〉nℓ =
Γ(2ℓ+ k + 3)(2n+ 2ℓ)!

n22n−2ℓ−1(4ℓ+ 2)!(2µ)k(n+ ℓ)!(n− ℓ− 1)!
n−ℓ−1
∑

s=0

(

n+ℓ
s

)(

n−ℓ−1
s

)

(

2n+2ℓ
2s

) 2F1

(

−2(n− ℓ− 1− s), 2ℓ+ k + 3

4ℓ+ 3

∣

∣

∣

∣

2

)

.
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where 〈rk〉nℓ is given as a finite sum of hypergeometric terms and

(6.4) 〈rk〉nℓ =
Γ(2ℓ+ k + 3)Γ(n− ℓ− k − 2)

2n(2µ)kΓ(n− ℓ)Γ(2ℓ+ 2)Γ(−1− k)

3F2

(

k + 2, 1 + ℓ− n, 2ℓ+ k + 3

2ℓ+ 2, l + k + 3− n

∣

∣

∣

∣

1

)

.

given in Theorem 4.5. This section compares these expressions with the results
found in the literature.

Example 6.1. Take ℓ = n− 1. Then the sum (6.3) reduces to 1 since the index s
must vanish. Then

(6.5) 〈rk〉n,n−1 =
Γ(k + 2n+ 1)

(2µ)k(2n)!
.

In particular, for k ∈ N, this becomes

(6.6) 〈rk〉n,n−1 =
(2n+ k)!

(2µ)k(2n)!
.

Example 6.2. The case ℓ = n− 2 reduces the sum (6.3) to two terms. The result
is

(6.7) 〈rk〉n,n−2 =
(k2 + 3k + 2n)Γ(k + 2n− 1)

2(2µ)k(2n− 2)!
.
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