THE STORY OF LANDEN, THE HYPERBOLA AND THE ELLIPSE

VICTOR H. MOLL, JUDITH L. NOWALSKY, AND LEONARDO SOLANILLA

Abstract. We establish a relation among the arc lengths of a hyperbola, a circle and an ellipse.

1. Introduction

The problem of rectification of conics was a central question of analysis in the $18^{\text {th }}$ century. The goal of this note is to describe Landen's work on rectifying the arc of a hyperbola in terms of an ellipse and a circle. Naturally, Landen's language is that of his time, in terms of fluents and fluxions, and his arguments are not rigorous in the modern sense.

The main result presented here is a special relation between the length of an ellipse, the length of a hyperbolic segment, and the length of circle. The proof is based on a generalization of Euler's formula for the lemniscatic curve as described in [4].

2. The hyperbola

The arc length of the equilateral hyperbola

$$
\begin{equation*}
h(t)=\sqrt{t^{2}-1}, \quad t \geq 1 \tag{2.1}
\end{equation*}
$$

starting at $t=1$ is given by

$$
\begin{equation*}
L_{h}(x)=\int_{1}^{x} \sqrt{\frac{2 t^{2}-1}{t^{2}-1}} d t \tag{2.2}
\end{equation*}
$$

as a function of the terminal point $t=x$. The tangent line to the hyperbola at $t=x$ is

$$
\begin{equation*}
T_{h}(t)=\sqrt{x^{2}-1}+\frac{x}{\sqrt{x^{2}-1}}(t-x) \tag{2.3}
\end{equation*}
$$

whose intersection with the t-axis is $t=1 / x \in(0,1)$. The line

$$
\begin{equation*}
N_{h}(t)=-\frac{\sqrt{x^{2}-1}}{x} t \tag{2.4}
\end{equation*}
$$

is the perpendicular to L_{h} passing through the origin. The lines T_{h} and L_{h} intersect at the point

$$
\begin{equation*}
P_{h}=\left(\frac{x}{2 x^{2}-1},-\frac{\sqrt{x^{2}-1}}{2 x^{2}-1}\right) \tag{2.5}
\end{equation*}
$$

Date: April 27, 2001.
1991 Mathematics Subject Classification. Primary 33.
Key words and phrases. Landen transformations.

The distance from $(x, h(x))$ to the common point P_{h} is

$$
\begin{equation*}
g_{h}(x)=2 x \sqrt{\frac{x^{2}-1}{2 x^{2}-1}} . \tag{2.6}
\end{equation*}
$$

It was observed by Maclaurin, D'Alambert, and Landen that

$$
\begin{equation*}
f_{h}(x):=g_{h}(x)-L_{h}(x)=2 x \sqrt{\frac{x^{2}-1}{2 x^{2}-1}}-\int_{1}^{x} \sqrt{\frac{2 t^{2}-1}{t^{2}-1}} d t \tag{2.7}
\end{equation*}
$$

is easier to analyze than the arc length $L_{h}(x)$.
Proposition 2.1. Let

$$
\begin{equation*}
F_{h}(z)=\frac{1}{2} \int_{z}^{1} \sqrt{\frac{t}{1-t^{2}}} d t \tag{2.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{h}(z)=f_{h}(x) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\frac{1}{2 x^{2}-1} \tag{2.10}
\end{equation*}
$$

Proof. Make the change of variable (2.10) in (2.7). Then $f_{h}(x)$ becomes

$$
\begin{equation*}
F_{h}(z)=\sqrt{\frac{1-z^{2}}{z}}+\frac{1}{2} \int_{1}^{z} \frac{d s}{s^{3 / 2} \sqrt{1-s^{2}}} \tag{2.11}
\end{equation*}
$$

in terms of the new variable $z=1 /\left(2 x^{2}-1\right)$. Since

$$
\frac{d}{d s} \sqrt{\frac{1-s^{2}}{s}}=\frac{-1-s^{2}}{2 s^{3 / 2} \sqrt{1-s^{2}}}
$$

integrating from 1 to z reduces (2.11) to (2.8).

3. The ellipse

The equation of the ellipse can be written as

$$
\begin{equation*}
e(t)=\sqrt{2\left(1-t^{2}\right)}, \quad|t| \leq 1 \tag{3.1}
\end{equation*}
$$

In this case the tangent line at $t=r$ is

$$
T_{e}(t)=\sqrt{2\left(1-r^{2}\right)}-\sqrt{\frac{2 r^{2}}{1-r^{2}}}(t-r)
$$

and the line

$$
N_{e}(t)=\sqrt{\frac{1-r^{2}}{2 r^{2}}} t
$$

is the perpendicular to T_{e} through the origin. These two lines intersect at the point

$$
\begin{equation*}
P_{e}=\left(\frac{2 r}{1+r^{2}}, \frac{\sqrt{r\left(1-r^{2}\right)}}{1+r^{2}}\right) \tag{3.2}
\end{equation*}
$$

and the distance from $(r, e(r))$ to the common point P_{e} is

$$
\begin{equation*}
g_{e}(r)=r \sqrt{\frac{1-r^{2}}{1+r^{2}}} \tag{3.3}
\end{equation*}
$$

We express the function g_{e} in terms of the new variable $z=r^{2}$ as

$$
\begin{equation*}
g_{e}(z)=\sqrt{\frac{z(1-z)}{1+z}} \tag{3.4}
\end{equation*}
$$

4. The connection

We now evaluate the function $F_{h}(z)$ in (2.8) at two points $y, z \in(0,1)$ related via the bilinear transformation $z=(1-y) /(1+y)$. We have

$$
F_{h}(z)+F_{h}(y)=\frac{1}{2} \int_{y}^{1} \sqrt{\frac{s}{1-s^{2}}} d s+\frac{1}{2} \int_{z}^{1} \sqrt{\frac{s}{1-s^{2}}} d s
$$

The change of variable $\sigma=(1-s) /(1+s)$ in the second integral yields

$$
F_{h}(z)+F_{h}(y)=\frac{1}{2} \int_{y}^{1} \sqrt{\frac{s}{1-s^{2}}} d s+\frac{1}{2} \int_{0}^{y} \frac{\sqrt{1-\sigma}}{(1+\sigma)^{3 / 2} \sqrt{\sigma}} d \sigma
$$

Now recall the function $g_{e}(z)$ in (3.4) and its differential

$$
\frac{d g_{e}}{d z}=\frac{1}{2} \frac{\sqrt{1-z}}{\sqrt{z}(1+z)^{3 / 2}}-\frac{1}{2} \frac{\sqrt{z}}{\sqrt{1-z^{2}}}
$$

Therefore

$$
F_{h}(z)+F_{h}(y)=g_{e}(z)-g_{e}(1)+\frac{1}{2} \int_{0}^{1} \frac{\sqrt{t}}{\sqrt{1-t^{2}}} d t
$$

Now observe that $g_{e}(1)=0$ and introduce the absolute constant

$$
\begin{equation*}
L:=\frac{1}{2} \int_{0}^{1} \frac{\sqrt{t}}{\sqrt{1-t^{2}}} d t \tag{4.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
F_{h}(z)+F_{h}(y)=g_{e}(z)+L \tag{4.2}
\end{equation*}
$$

Thus we have established the following integral relation.
Theorem 4.1. Let $y \in(0,1)$ and $z=(1-y) /(1+y)$. Then

$$
\begin{equation*}
\frac{1}{2} \int_{y}^{1} \sqrt{\frac{s}{1-s^{2}}} d s+\frac{1}{2} \int_{z}^{1} \sqrt{\frac{s}{1-s^{2}}} d s=\sqrt{\frac{z(1-z)}{1+z}}+L \tag{4.3}
\end{equation*}
$$

with the absolute constant L in (4.1).
Proof. Let

$$
\begin{aligned}
G_{h}(z) & =F_{h}(z)+F_{h}(y) \\
& =\frac{1}{2} \int_{(1-z) /(1+z)}^{1} \sqrt{\frac{s}{1-s^{2}}} d s+\frac{1}{2} \int_{z}^{1} \sqrt{\frac{s}{1-s^{2}}} d s
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{d G_{h}(z)}{d z}=\frac{1}{2} \frac{\sqrt{1-z}}{\sqrt{z}(1+z)^{3 / 2}}-\frac{1}{2} \frac{\sqrt{z}}{\sqrt{1-z^{2}}} \tag{4.4}
\end{equation*}
$$

Integrating (4.4) gives

$$
\begin{equation*}
G_{h}(z)=\sqrt{\frac{z(1-z)}{1+z}}+L \tag{4.5}
\end{equation*}
$$

By letting $z=0$, the constant L is easily evaluated as

$$
\begin{align*}
L & :=\frac{1}{2} \int_{0}^{1} \frac{\sqrt{t}}{\sqrt{1-t^{2}}} d t \tag{4.6}\\
& =\frac{1}{2} \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta \\
& =\frac{\pi \sqrt{2 \pi}}{\Gamma^{2}(1 / 4)}
\end{align*}
$$

using Wallis' formula.
We now follow Landen to establish the value of L in terms of elliptic arcs.
The equation (4.2) simplifies if we evaluate it at the fixed point $z^{*}=\sqrt{2}-1$ of the transformation $z=(1-y) /(1+y)$. In terms of the x variable, the fixed point is

$$
\begin{equation*}
x^{*}=\sqrt{1+\frac{1}{\sqrt{2}}}=\sqrt{2} \cos (\pi / 8) \tag{4.7}
\end{equation*}
$$

Indeed

$$
\begin{equation*}
F_{h}\left(z^{*}\right)=\frac{1}{2}(\sqrt{2}-1+L) \tag{4.8}
\end{equation*}
$$

Now introduce the complementary integral

$$
\begin{equation*}
M:=\frac{1}{2} \int_{0}^{1} \frac{d t}{\sqrt{t\left(1-t^{2}\right)}} \tag{4.9}
\end{equation*}
$$

and observe that

$$
L+M=L_{e}(1)=\frac{1}{2} \int_{0}^{1} \sqrt{\frac{1+t}{t(1-t)}} d t
$$

where $L_{e}(1)$ is a quarter of the length of the ellipse.
Theorem 4.2. The integrals L and M satisfy

$$
\begin{aligned}
L+M & =L_{e}(1) \\
L \times M & =\frac{\pi}{4}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L & =\frac{1}{2}\left(L_{e}(1)-\sqrt{L_{e}(1)^{2}-\pi}\right) \\
M & =\frac{1}{2}\left(L_{e}(1)+\sqrt{L_{e}(1)^{2}-\pi}\right)
\end{aligned}
$$

Proof. Observe that for $q \in \mathbb{Q}$ we have

$$
\begin{equation*}
\frac{d\left(t^{q} \sqrt{1-t^{2}}\right)}{d t}=\frac{q t^{q-1}-(q+1) t^{q+1}}{\sqrt{1-t^{2}}} \tag{4.10}
\end{equation*}
$$

and integrating from 0 to 1 we obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{q-1}}{\sqrt{1-t^{2}}} d t=\frac{q+1}{q} \int_{0}^{1} \frac{t^{q+1}}{\sqrt{1-t^{2}}} d t \tag{4.11}
\end{equation*}
$$

For example, with $q=3 / 2$ it yields

$$
2 L=\int_{0}^{1} \frac{t^{1 / 2}}{\sqrt{1-t^{2}}} d t=\frac{5}{3} \int_{0}^{1} \frac{t^{5 / 2}}{\sqrt{1-t^{2}}} d t
$$

Iteration of this recurrence yields, after m steps,

$$
\begin{equation*}
2 L=\prod_{j=1}^{2 m+1}(2 j-1)^{(-1)^{j+1}} \int_{0}^{1} \frac{t^{2 m+1 / 2}}{\sqrt{1-t^{2}}} d t . \tag{4.12}
\end{equation*}
$$

Similarly, starting with $q=1 / 2$ we get after m steps

$$
\begin{equation*}
2 M=\prod_{j=1}^{2 m}(2 j-1)^{(-1)^{j}} \int_{0}^{1} \frac{t^{2 m-1 / 2}}{\sqrt{1-t^{2}}} d t \tag{4.13}
\end{equation*}
$$

Iteration of (4.10) with initial values $q=0$ and $q=1$ yields for

$$
A:=\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\frac{\pi}{2}
$$

and

$$
B:=\int_{0}^{1} \frac{t d t}{\sqrt{1-t^{2}}}=1
$$

the expressions

$$
\begin{aligned}
A & =\prod_{j=1}^{2 m} j^{(-1)^{j}} \int_{0}^{1} \frac{t^{2 m} d t}{\sqrt{1-t^{2}}} \\
B & =\prod_{j=1}^{2 m}(j+1)^{(-1)^{j}} \int_{0}^{1} \frac{t^{2 m+1} d t}{\sqrt{1-t^{2}}}
\end{aligned}
$$

and

$$
\frac{2 L}{A}=\prod_{j=1}^{2 m}(2 j-1)^{(-1)^{j+1}} j^{(-1)^{j+1}} \frac{\int_{0}^{1} t^{2 m+1 / 2}\left(1-t^{2}\right)^{-1 / 2} d t}{\int_{0}^{1} t^{2 m}\left(1-t^{2}\right)^{-1 / 2} d t} \times(4 m+1)
$$

and

$$
\frac{2 M}{B}=\prod_{j=1}^{2 m}(2 j-1)^{(-1)^{j}} j^{(-1)^{j}} \frac{\int_{0}^{1} t^{2 m-1 / 2}\left(1-t^{2}\right)^{-1 / 2} d t}{\int_{0}^{1} t^{2 m+1}\left(1-t^{2}\right)^{-1 / 2} d t} \times \frac{1}{2 m+1} .
$$

As $m \rightarrow \infty$, the quotient of the integrals converges to 1 and we obtain

$$
\begin{equation*}
2 L \times 2 M=\frac{\pi}{2} \lim _{m \rightarrow \infty} \frac{4 m+1}{2 m+1}=\pi \tag{4.14}
\end{equation*}
$$

We now write $\pi / 2=L_{c}(1)$ as a quarter of the length of the circle in analogy to $L_{e}(1)$.

Theorem 4.3. The length of the hyperbolic segment is given by

$$
\begin{equation*}
L_{h}\left(\sqrt{\frac{1}{2-\sqrt{2}}}\right)=\frac{\sqrt{2}+1}{2}-\frac{1}{4} \sqrt{\left(L_{e}(1)^{2}-4 L_{c}(1)\right)}-L_{e}(1) \tag{4.15}
\end{equation*}
$$

References

[1] CAJORI, F.: A history of the conceptions of limits and fluxions in Great Britain from Newton to Woodhouse. Open Court, Chicago, 1919.
[2] EULER, L.: De miris proprietatibus curvae elasticae sub aequatione $y=\int x x / \sqrt{1-x^{4}} d x$ contentae, Comment 605 Enestroemianus Index. Acta academia scientiarum Petrop. 1782: II (1786), 34-61. Reprinted in Opera Omnia, ser. 1, 21, 91-118.
[3] LANDEN, J.: A disquisition concerning certain fluents, which are assignable by the arcs of the conic sections; wherein are investigated some new and useful theorems for computing such fluents. Philos. Trans. Roy. Soc. London 61 (1771), 298-309.
[4] MOLL, V. - NEILL, P. - NOWALSKY, J. - SOLANILLA, L.: A property of Euler's elastic curve. Elemente der Mathematik 55, 2000, 156-162.
[5] NOWALSKY, J.L.: Properties of the Generalized Euler's Elastic Curve $y=$ $\int x^{n} / \sqrt{1-x^{2 n}} d x$. Master Thesis, Tulane University, 1998.

Department of Mathematics, Tulane University, New Orleans, Louisiana 70148
E-mail address: vhm@math.tulane.edu
Department of Mathematics, Tulane University, New Orleans, Louisiana 70148
E-mail address: judithn@math.tulane.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: solanill@math.tulane.edu

