
MODIFIED NÖRLUND POLYNOMIALS

ATUL DIXIT, ADAM KABZA, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

Abstract. The modified Bernoulli numbers B∗
n considered by Zagier are gen-

eralized to modified Nörlund polynomials B
(`)∗
n . For ` ∈ N, an explicit expres-

sion for the generating function for these polynomials is obtained. Evaluations

of some spectacular integrals involving Chebyshev polynomials, and of a fi-
nite sum involving integrals of the Hurwitz zeta function are also obtained.

New results about the `-fold convolution of the square hyperbolic secant dis-
tribution are obtained, such as a differential-difference equation satisfied by a

logarithmic moment and a closed-form expression in terms of the Barnes zeta

function.

1. Introduction

The Bernoulli numbers, defined by the generating function

(1.1)

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
,

were extended by N. E. Nörlund [12, Ch. 6] to

(1.2)

∞∑
n=0

B(α)
n

zn

n!
=

(
z

ez − 1

)α
.

Here α ∈ C. The coefficients B
(α)
n are called the Nörlund polynomials (these are

indeed polynomials in α). The list {B(α)
n : n ≥ 0} begins with

(1.3)

{
1, −α

2
,

1

12
α(3α− 1), −1

8
α2(α− 1),

1

240
α(15α3 − 30α2 + 5α+ 2)

}
.

For α ∈ N, the Nörlund polynomials are expressed as the α-fold convolutions of
Bernoulli numbers. This follows from the recurrence

(1.4) B(α)
n =

n∑
j=0

(
n

j

)
B

(α−1)
j Bn−j , for α ≥ 2,

obtained from (1.2), and the initial condition B
(1)
n = Bn.

Zagier [16] introduced a modification of the Bernoulli numbers via

(1.5) B∗n =

n∑
r=0

(
n+ r

2r

)
Br
n+ r

, n ∈ N,
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and their polynomial version

(1.6) B∗n(x) =

n∑
r=0

(
n+ r

2r

)
Br(x)

n+ r
,

was studied in detail in [7]. Here Bn(x) is the Bernoulli polynomial with the
generating function

(1.7)

∞∑
n=0

Bn(x)
zn

n!
=

zexz

ez − 1
,

and so along with (1.1), we have Bn = Bn(0).

In particular, [7] establishes the formula

(1.8)

∞∑
n=1

B∗n(x)zn = −1

2
log z − 1

2
ψ(z + 1/z − 1− x)

for the generating function of the Zagier polynomials B∗n(x), viewed as a formal
power series. Here

(1.9) ψ(x) =
Γ′(x)

Γ(x)

is the digamma function. The special case x = 0 yields

(1.10)

∞∑
n=1

B∗nz
n = −1

2
log z − 1

2
ψ(z + 1/z − 1).

In the present work, the Nörlund polynomials are modified in a similar way as
Zagier’s. These modified Nörlund polynomials are defined here by

(1.11) B(α)∗
n :=

n∑
r=0

(
n+ r

2r

)
B

(α)
r

n+ r
, n ∈ N.

The Zagier modification of the Bernoulli numbers (1.5) is the special case α = 1.
For α ∈ N, the main result of this paper is an expression for the generating function

(1.12) FB∗(z;α) =

∞∑
n=1

B(α)∗
n zn,

involving derivatives of the digamma function as given in Theorem 1.2. This is a
generalization of (1.10).

Notation. Standard notation is used throughout the paper.

1) The generalized binomial coefficients are defined by(
x

n

)
=

1

n!
x(x− 1) · · · (x− n+ 1),

for x ∈ R and n ∈ N.

2) The harmonic numbers are defined by

Hn = 1 +
1

2
+ · · ·+ 1

n
.

3) The gamma function is defined by the integral representation

Γ(z) =

∫ ∞
0

e−ttz−1 dt
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for Re z > 0 and extended by analytic continuation. It satisfies the functional
equation Γ(z + 1) = zΓ(z).

4) The digamma function ψ(z) is defined by

ψ(z) =
d

dz
log Γ(z).

It satisfies

ψ(z + 1) = ψ(z) +
1

z
.

5) The Chebyshev polynomials of the first and second kind are defined, respectively,
by their Binet representations [15]

(1.13) Tn(x) =
1

2

[
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

]
and

(1.14) Un(x) =
1

2
√
x2 − 1

[
(x+

√
x2 − 1)n − (x−

√
x2 − 1)n

]
.

The work presented here is based on the symbolic notation

(1.15) g(x+B) =
π

2

∫ ∞
−∞

g
(
x− 1

2 + iv
)

sech2(πv) dv.

The formula (1.15) is based on the fact that, if LB is a random variable with the
square secant hyperbolic distribution

(1.16) ρ(x) =
π

2
sech2(πx),

then

(1.17) Bn = E
(
ıLB − 1

2

)n
=

∫ ∞
−∞

ρ(u)
(
ıu− 1

2

)n
du

so that, symbolically, with g(x) = xn,

(1.18) Bn = g(B).

This extends to Bernoulli polynomials as

(1.19) Bn(x) = (B + x)n = E
(
x+ ıLB − 1

2

)n
and to any analytic function g as

(1.20) E
[
g(x− 1

2 + iLB)
]

=
π

2

∫ ∞
−∞

g
(
x− 1

2 + iv
)

sech2(πv) dv.

This is complemented with the notation

(1.21) f(x+ U) =

∫ 1

0

f(x+ u) du,

that corresponds to the average over a uniform distribution U on [0, 1].

The symbolic form (1.15) is a restatement of the umbral approach described
in [7]. The classical umbral calculus begins with a sequence {an} and formally
transforms it into powers an of a new variable a, named the umbra of {an}. The
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original sequence is then recovered by the evaluation map eval{an} = an. The
Bernoulli umbra, studied in [7], is defined by the generating function

(1.22) eval{exp (tB(x))} =
text

et − 1

and it satisfies, with B = B(0),

(1.23) −B = B + 1, and (−B)n = Bn for n 6= 1,

and

(1.24) eval{B(x)} = eval{x+ B}.
For more properties of Bernoulli umbrae, the reader is referred to Gessel [10]. The-
orem 2.3 in [7] states that the Bernoulli umbra coincides with a random variable
iLB − 1

2 , in the sense that,

(1.25) eval{g(B + x)} = E
[
g(x− 1

2 + iLB)
]
,

for all admissible functions g.
Thus from (1.15), (1.20) and (1.25), one obtains the three equivalent notations

(1.26) g(x+B) = E
[
g(x− 1

2 + iLB)
]

= eval{g(B(x))},
and for brevity, we will mostly use the symbolic form g(x+B).

Now take ` independent copies {LB1 , · · · , LB`
} of the random variable LB . The

density ρ`(x) associated to L = LB1
+ · · ·LB`

is then the `-fold convolution of the
density ρ(x) of each summand. This is computed by the recurrence

(1.27) ρ`(x) =

∫ ∞
−∞

ρ`−1(u)ρ1(x− u) du,

starting with ρ1(x) = ρ(x). A direct computation of the densities {ρ`} is remarkably
difficult. The case ` = 2 is presented in Section 4. The case ` = 1 and g(x) = log x
of the formula

(1.28) E[g(x− `
2 + iLB1

+ iLB2
+ · · ·+ iLB`

)] =

∫ ∞
−∞

ρ`(u)g(x− `
2 + iu) du

was used in [7] to evaluate the generating functions of the modified Bernoulli num-
bers and of Zagier polynomials. In the umbral notation, this quantity can be written
as

(1.29) eval [g(x+ B1 + · · ·+ B`)] = eval
[
g
(
B(`)(x)

)]
,

so that the umbra associated with the modified Nörlund polynomials is

(1.30) B(`) = B1 + B2 + · · ·+ B`.

This is extended here to compute the corresponding generating function of the
modified Nörlund polynomials. A crucial step in the argument uses the following
result which evaluates the logarithm of the umbra B(`).

Theorem 1.1. Let ` ∈ N be fixed. For x ∈ R,

eval{logB(`)(x)} = −H`−1 +
d`−1

dx`−1

{(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)}
.

Here Hr is the harmonic number and ψ(x) is the digamma function and
⌊
`
2

⌋
denotes

the floor function.
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The following generating function for the modified Nörlund polynomials is now
obtained from the previous theorem.

Theorem 1.2. Let ` ∈ N be fixed. The generating function

FB∗(z; `) =

∞∑
n=1

B(`)∗
n zn

for the modified Nörlund polynomials B
(`)∗
n is given by

FB∗(z; `) = −1

2
log z +

1

2

[
H`−1 −

d`−1

dx`−1

{(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)}]
evaluated at x = z + 1/z + `− 2.

An alternate representation for eval{logB(`)(x)} gives the following remarkable
integral evaluation involving the density ρ`(x).

Theorem 1.3. Let ` ∈ N be fixed. Then∫ ∞
0

log(1 + bu2) ρ`(u) du =

− log

∣∣∣∣x− `

2

∣∣∣∣−H`−1 +
d`−1

dx`−1

{(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)}
with b = (x− `/2)−2.

Theorems 1.2 and 1.3 readily give the following result. We record it as a theorem
only to emphasize the link between the generating function of the modified Nörlund
polynomials and the definite integral containing the density ρ`(x).

Theorem 1.4. Let ` ∈ N be fixed. The generating function

FB∗(z; `) =

∞∑
n=1

B(`)∗
n zn

for the modified Nörlund polynomials B
(`)∗
n is given by

FB∗(z; `) = −1

2
log z − 1

2
log

∣∣∣∣x− `

2

∣∣∣∣− 1

2

∫ ∞
0

log(1 + bu2)ρ`(u) du

with b = (x− `/2)−2 and x = z + 1/z + `− 2.

Section 2 describes a symbolic formalism based on two probability densities.
This is used in Section 3 to obtain an expression for the generating function of
the Nörlund polynomials. Section 4 presents a family of densities that provide an
alternative form of this generating function. These densities satisfy a differential-
difference equation and the initial conditions are evaluated in Section 5. The last
two sections uses the densities described above to evaluate some definite integrals in-
volving Chebyshev polynomials and the Hurwitz zeta function. A direct evaluation
of these examples seems out of the range of the current techniques of integration.
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2. Some symbolic formalism

The definition of the digamma function as ψ(z) = d
dz log Γ(z) immediately gives

the evaluation

(2.1)

∫ 1

0

ψ(x+ t) dt = log x.

The inversion formula

(2.2) ψ(x) =
π

2

∫ ∞
−∞

log(x− 1
2 + iu) sech2πu du

was established in Theorem 2.5 of [7].
In the notation (1.21) and (1.15), (2.1) and (2.2) expresses the equivalence of

the relations

(2.3) ψ(x+ U) = log x and ψ(x) = log(x+B).

This is now shown to be a particular case of a more general inversion formula.

Definition 2.1. For real-valued functions f and g, define in recursive form

(2.4) f(x+ U (`)) = f(x+ U + U (`−1)) for ` ≥ 2,

with U (1) = U , and similarly

(2.5) g(x+B(`)) = g(x+B +B(`−1)) for ` ≥ 2,

with B(1) = B.

In the lemma given below, this symbolic formalism is connected to anti-derivatives

F (`) of the function f , defined as any function F (`) such that
d`

dx`
F (`)(x) = f(x),

via the classical forward difference operator ∆ defined by

(2.6) ∆f(x) = f(x+ 1)− f(x).

It is clear that if f is a polynomial of degree `, then ∆f(x) is also a polynomial and
its degree is `− 1.

Lemma 2.2. Let F (`) be an antiderivative of f of order `. Then

(2.7) f(x+ U (`)) = ∆`F (`)(x).

Proof. The case ` = 1 is straightforward since

(2.8) f(x+ U) =

∫ 1

0

f(x+ u) du = F (x+ 1)− F (x)

by the Fundamental Theorem of Calculus. The inductive step is

f
(
x+ U (`+1)

)
= f

(
x+ U (`) + U

)
= ∆`F (`)(x+ U)

= ∆`
[
F (`+1)(x+ 1)− F (`+1)(x)

]
= ∆`+1F (`+1)(x).

�
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The next result is a generalization of (2.3): it shows that the symbols U and B
invert each other. The proof uses the evaluation of the definite integral

(2.9)

∫ ∞
0

cos zv

cosh2 πv
dv =

z

2π

(
sinh

z

2

)−1
,

which is obtained from entry 3.982.2 in [11]:

(2.10)

∫ ∞
0

cos ax

cosh2 βx
dx =

πa

2β2

(
sinh

πa

2β

)−1
, Reβ > 0, a > 0.

A proof of this entry will appear in [6].

Theorem 2.3. For any admissible formal power series,

(2.11) g(x) = f(x+ U) is equivalent to f(x) = g(x+B).

Proof. In view of linearity, it suffices to consider the case f(x) = xn. Start with
the generating function

∞∑
n=0

(x+ U)n

n!
zn = ez(x+U) =

∫ 1

0

ez(x+u)du = ezx
ez − 1

z
,

and
∞∑
n=0

(x+B)n

n!
zn = ez(x+B) =

π

2

∫ ∞
−∞

e
z
(
x+iv− 1

2

)
sech2(πv) dv

=
π

2
e
z
(
x− 1

2

) ∫ ∞
−∞

eizvsech2(πv) dv

= πe
z
(
x− 1

2

) ∫ ∞
0

cos(zv)

cosh2(πv)
dv.

The evaluation (2.10) gives

(2.12)

∞∑
n=0

(x+B)n

n!
zn = ezx

z

ez − 1
.

Now assume first that g(x) = f(x+ U), i.e., g(x) = (x+ U)n. Then

∞∑
n=0

g(x+B)zn

n!
=

∞∑
n=0

(x+B + U)n

n!
zn

= ez(x+B) e
z − 1

z

= ezx
z

ez − 1

ez − 1

z
= ezx.

From here it follows that (x+B + U)n = xn. The other direction is established in
a similar form. �

Note 2.1. A direct extension gives the equivalence of the statements

(2.13) g(x) = f(x+ U (`)) and f(x) = g(x+B(`)), for all ` ∈ N,

which can be proved by induction.
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3. The generating function of the modified Nörlund polynomials

This section uses the results of the previous section to prove an expression for

the horizontal generating function of the modified Nörlund polynomials B
(`)∗
n as a

formal power series. Here ` is a fixed positive integer. This generating function is
defined by

(3.1) FB∗(z; `) =

∞∑
n=1

B(`)∗
n zn.

Lemma 3.1. Let ψ(x) be the digamma function and H` the `-th harmonic number.
Then for ` ≥ 1 and −1 ≤ p ≤ `− 1,

(3.2) ∆`

[(
x+ p

`

)
ψ(x)

]
= H` + ψ(x+ p+ 1).

Proof. The result is established first for p = 0. Define

(3.3) h`(x) = ∆`

[(
x

`

)
ψ(x)

]
and observe that

h`+1(x)− h`(x) = ∆`+1

[(
x

`+ 1

)
ψ(x)

]
−∆`

[(
x

`

)
ψ(x)

]
= ∆`∆

[(
x

`+ 1

)
ψ(x)

]
−∆`

[(
x

`

)
ψ(x)

]
= ∆`

[(
x+ 1

`+ 1

)
ψ(x+ 1)−

(
x

`+ 1

)
ψ(x)−

(
x

`

)
ψ(x)

]
.

The identity

(3.4)

(
x+ 1

`+ 1

)
=

(
x

`+ 1

)
+

(
x

`

)
gives

h`+1(x)− h`(x) = ∆`

[(
x

`+ 1

)
(ψ(x+ 1)− ψ(x)) +

(
x

`

)
(ψ(x+ 1)− ψ(x))

]
= ∆`

[
1

x

((
x

`+ 1

)
+

(
x

`

))]
= ∆`

[
(x− 1) · · · (x− `)

(`+ 1)!
+

(x− 1) · · · (x− `+ 1)

`!

]
The second fraction is a polynomial in x of degree `− 1. Therefore ∆` annihilates
it. The first fraction is a polynomial of degree ` and only its leading term survives
the application of ∆`. This leads to the difference equation

(3.5) h`+1(x)− h`(x) = ∆` x`

(`+ 1)!
=

1

`+ 1
,

since ∆`x` = `!. The latter follows directly from Lemma 2.2: indeed, choosing
f(x) = 1 produces F (`)(x) = x`/`! and therefore

(3.6) ∆`x
`

`!
= f(x+ U (`−1)) = 1,
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which gives the result. Now write (3.5) as

(3.7) h`+1(x)− ψ(`+ 2) = h`(x)− ψ(`+ 1),

so that

(3.8) h`(x) = h1(x) + ψ(`+ 1)− ψ(2).

Now

(3.9) h1(x) = ∆

[(
x

1

)
ψ(x)

]
= 1 + ψ(x+ 1)

gives the stated result for p = 0.
Now assume p 6= 0 and that 1 ≤ p ≤ `− 1. Observe that

∆`

[(
x+ p

`

)
(ψ(x+ p)− ψ(x))

]
= ∆`

[(
x+ p

`

)(
1

x+ p− 1
+ · · ·+ 1

x

)]
=

1

`!
∆`

[
`−1∏
u=0

(x+ p− u)×
(

1

x+ p− 1
+ · · ·+ 1

x

)]
The bounds 1 ≤ p ≤ `− 1 show that the last expression is actually a polynomial of
degree `− 1. One can also easily check that when p = −1,

(
x+p
`

)
(ψ(x+ p)− ψ(x))

is a polynomial of degree `− 1. This implies that for −1 ≤ p ≤ `− 1, p 6= 0,

(3.10) ∆`

[(
x+ p

`

)
(ψ(x+ p)− ψ(x))

]
= 0.

It follows that

∆`

[(
x+ p

`

)
ψ(x)

]
= ∆`

[(
x+ p

`

)
ψ(x+ p)

]
= h`(x+ p)

= H` + ψ(x+ p+ 1),

as can be seen from (3.8) and (3.9). This completes the argument. �

The proof of Theorem 1.1 is given next.

Proof. Using the symbolic operator B, the left-hand side of Theorem 1.1 can be
written as log(x+B(`)). Let f(x) denote the right-hand side of Theorem 1.1, i.e.,

f(x) = −H`−1 +
d`−1

dx`−1

[(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)]
.(3.11)

Using (2.13), it suffices to prove

f
(
x+ U (`−1)

)
= log (x+B) .

However from (2.3),

(3.12) log (x+B) = ψ (x) .

So we only need to show that

f
(
x+ U (`−1)

)
= ψ(x).

Now Lemma 2.2 gives

(3.13) f(x+ U (`−1)) = ∆`−1F (`−1)(x),
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and writing f(x) as

(3.14) f(x) =
d`−1

dx`−1

[(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)
− x`−1

(`− 1)!
H`−1

]
produces

(3.15) F (`−1)(x) =

(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)
− x`−1

(`− 1)!
H`−1.

Then

(3.16) ∆`−1F (`−1)(x) = −H`−1 + ∆`−1
[(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)]
and (3.13) gives

(3.17) f(x+ U (`−1)) = −H`−1 + ∆`−1
[(
x− 1

`− 1

)
ψ

(
x−

⌊
`

2

⌋)]
.

Now Lemma 3.1, with ` replaced by `− 1, x replaced by x−
⌊
`
2

⌋
and p = b `2c − 1,

yields

(3.18) f(x+ U (`−1)) = ψ(x).

This completes the proof. �

The proof of Theorem 1.2, which expresses the generating function for the mod-
ified Nörlund polynomials, is now given.

Proof. The proof of the identity

(3.19) FB∗(z) =

∞∑
n=1

B∗nz
n = −eval

{
1
2 log

(
(1− z)2 − zB

)}
given in [7, Equation (3.4)] can be adapted to derive, in a similar manner, the
relation

(3.20) FB∗(z; `) =

∞∑
n=1

B(`)∗
n zn = −eval

{
1

2
log
(

(1− z)2 − zB(`)
)}

.

This is described next. Basic facts of umbral calculus, namely −B(`) = B(`) + `
and x+ B(`) = B(`)(x), give

∞∑
n=1

B(`)∗
n zn = −1

2
log z − 1

2
eval

{
log

(
z +

1

z
− 2−B(`)

)}
(3.21)

= −1

2
log z − 1

2
eval

{
log

(
z +

1

z
− 2 + B(`) + `

)}
= −1

2
log z − 1

2
eval

{
logB(`)

(
z +

1

z
+ `− 2

)}
.

The final step uses Theorem 1.1. �

The proof of Theorem 1.3 is presented next.
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Proof. Start with

eval{logB(`)(x)} = eval{log (x+ B1 + · · ·+ B`)}
= E

[
log
(
x− `

2 + i(LB1 + · · ·+ LB`
)
)]
.

Introduce the notation L = LB1
+ · · · + LB`

and since the density ρ` is an even
function, L and −L have the same distribution. Therefore, with b = (x− `/2)−2,

eval{logB(`)(x)} =
1

2
E

[
log

((
x− `

2

)2

+ L2

)]

= log

∣∣∣∣x− `

2

∣∣∣∣+
1

2
E
[
log(1 + bL2)

]
= log

∣∣∣∣x− `

2

∣∣∣∣+
1

2

∫ ∞
−∞

log(1 + bu2)ρ`(u) du

= log

∣∣∣∣x− `

2

∣∣∣∣+

∫ ∞
0

log(1 + bu2)ρ`(u) du,(3.22)

since ρ` is an even function of u. The result now follows from Theorem 1.1. �

4. A family of densities and a differential-difference equation

This section discusses the densities ρn(x) defined by the recurrence

(4.1) ρn(x) =

∫ ∞
−∞

ρn−1(y)ρ1(x− y)dy

with initial condition

(4.2) ρ1(x) = ρ(x) =
π

2
sech2(πx).

These densities provide the evaluation

(4.3) E

g
x− `

2 + i
∑̀
j=1

Bj

 =

∫ ∞
−∞

g(x− 1
2 + iv)ρ`(v)dv.

In particular, the generating function of the Nörlund polynomials is linked to these
densities via Theorem 1.4. Some properties of these densities are described next.

Lemma 4.1. The Fourier transform of ρ1(x) is given by

(4.4) ρ̂1(ξ) =
πξ

sinhπξ
.

Proof. The Fourier transform is given by

ρ̂1(ξ) =

∫ ∞
−∞

π

2
sech2(πx)e−2πixξ dx

= π

∫ ∞
0

cos(2πxξ)

cosh2(πx)
dx,

and the result follows by using (2.9). �

Corollary 4.1. The Fourier transform of ρ`(x) is given by

(4.5) ρ̂`(ξ) =

(
πξ

sinhπξ

)`
.
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Proof. This follows directly from the fact that Fourier transform converts convolu-
tions into products. �

The Fourier inversion formula now gives a representation for the density ρ`(x)
as

(4.6) ρ`(x) =
1

π

∫ ∞
−∞

(
y

sinh y

)`
e2ixy dy.

Note 4.2. J. Pitman and M. Yor [13, p. 299] studied the function

(4.7) φ`(x) =
1

2π

∫ ∞
−∞

(
y

sinh y

)`
eixydy

as part of their study on infinitely divisible distributions generated by Lévy pro-
cesses associated with hyperbolic functions. The expression (4.6) shows that

(4.8) ρ`(x) = 2φ`(2x).

These authors show that φt satisfies the differential-difference equation

(4.9) `(`+ 1)φ`+2(x) = (x2 + `2)φ′′` (x) + 2(`+ 2)xφ′`(x) + (`+ 1)(`+ 2)φ`(x).

Note 4.3. The authors of [13] also consider the transform

(4.10) ψ`(x) =
1

2π

∫ ∞
−∞

(
1

cosh y

)`
eixydy

and prove the explicit formulae

(4.11) ψ`(x) =
2`−2

πΓ(`)

∣∣∣∣Γ(`+ ix

2

)∣∣∣∣2 .
Then, they state ‘we do not know of any explicit formula for φ` like (4.11) valid for
general ` > 0’.

Note 4.4. The density functions ρ`(x) have also appeared in Airault [1, p. 2109,
(1.52), (1.53)]. This author proves that

ρ2`(x) =
π1−2`

2(2`− 1)!

d2`

dx2`

[
Q2`−1(πx)

tanh(πx)

]
(4.12)

ρ2`+1(x) =
π−2`

2(2`)!

d2`+1

dx2`+1
[Q2`(πx) tanh(πx)]

where

(4.13) Q2`(x) =
∏

1≤j≤2`−1

j odd

(
x2 +

π2j2

4

)

and

(4.14) Q2`+1(x) = x
∏

1≤j≤`

(x2 + j2π2).

The differential-difference equation (4.9) produces

(4.15) `(`+ 1)ρ`+2(x) =
(4x2 + `2)

4
ρ′′` (x) + 2x(`+ 2)ρ′`(x) + (`+ 1)(`+ 2)ρ`(x),
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so that ρ`(x) can be obtained from (4.15) and the initial conditions ρ1(x) in (4.2)
and ρ2(x). Even though the expression for ρ2(x) is well-known [13, p. 312, Table
6], it is derived here for the sake of completeness.

Lemma 4.2. The density function ρ2 is given by

(4.16) ρ2(x) =
π

sinh2(πx)
(πx coth(πx)− 1) .

Proof. The relation (1.27) gives

ρ2(x) =

∫ ∞
−∞

ρ1(u)ρ1(x− u) du

=
π2

4

∫ ∞
−∞

du

cosh2(πu) cosh2(π(x− u))

=
π

4

∫ ∞
−∞

dt

cosh2 t cosh2(πx− t)
.

The change of variable w = e2t gives

(4.17) ρ2(x) = 2π

∫ ∞
0

w dw

(w + 1)2(α+ βw)2
,

with α = eπx and β = e−πx. The final integral is evaluated by partial fractions to
produce the stated result. �

The higher densities ρ`(x), ` > 2, can now be computed via (4.15) and the
expressions in (4.2) and (4.16).

The next step is to show that the integral appearing in Theorem 1.3 satisfies a
differential-difference equation.

Theorem 4.3. The integral

z`(b) :=

∫ ∞
0

log(1 + bu2) ρ`(u) du

satisfies the differential-difference equation

`(`+ 1)y`+2(x+ 1) = x(x− `)y′′` (x) + 2(`+ 1)

(
x− `

2

)
y′`(x)

+ `(`+ 1)y`(x) +
`2

4
(
x− `

2

)2(4.18)

for b = (x− `/2)−2.

Proof. Let b > 0. Start with (4.15), i.e.,

`(`+ 1)ρ`+2(u) =

(
u2 +

`2

4

)
ρ′′` (u) + 2u(`+ 2)ρ′`(u) + (`+ 1)(`+ 2)ρ`(u).

Multiply both sides by log(1 + bu2) and integrate both sides from 0 to ∞ to obtain

`(`+ 1)z`+2(b) =

∫ ∞
0

(
u2 +

`2

4

)
log(1 + bu2) ρ′′` (u) du

+ 2(`+ 2)

∫ ∞
0

u log(1 + bu2) ρ′`(u) du+ (`+ 1)(`+ 2)z`(b).(4.19)
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Let

I1(b, `) :=

∫ ∞
0

u log(1 + bu2) ρ′`(u) du,

I2(b, `) :=

∫ ∞
0

(
u2 +

`2

4

)
log(1 + bu2) ρ′′` (u) du.(4.20)

Consider I1(b, `) first. Integration by parts yields

I1(b, `) =
[
u log(1 + bu2)ρ`(u)

]∞
0
−
∫ ∞
0

(
2bu2

1 + bu2
+ log(1 + bu2)

)
ρ`(u) du.

(4.21)

Note that ρ`(t)→ 0 as t→∞. This is easily seen for ρ1 since

(4.22) ρ1(t) =
π

2
sech2(πt) =

2πe−2πt

(1 + e−2πt)2
→ 0 as t→∞.

For ` ≥ 2, use the definition of ρ`(t) in (1.27), and the above asymptotic for ρ1,
along with Lebesgue’s dominated convergence theorem to deduce that ρ`(t)→ 0 as
t→∞. As t→ 0, it is easy to see that the densities ρ`(t) are finite.

This implies that the boundary terms in (4.21) vanish so that

I1(b, `) = −z`(b)− 2b

∫ ∞
0

ρ`(u)
d

db
log(1 + bu2) du

= −z`(b)− 2b
d

db
z`(b),(4.23)

where differentiation (with respect to b) under the integral sign was employed in
the last step.

Now consider I2(b, `), use integration by parts twice, and note that the boundary
terms again vanish, thereby giving

I2(b, `) =

∫ ∞
0

{
b(`2 + (20− b`2)u2 + 12bu4)

2(1 + bu2)2
+ 2 log(1 + bu2)

}
ρ`(u) du

= 2z`(b) +
b

2

∫ ∞
0

(`2 + (20− b`2)u2 + 12bu4)

(1 + bu2)2
ρ`(u) du.(4.24)

Next, use the following representation

(4.25)
(`2 + (20− b`2)u2 + 12bu4)

(1 + bu2)2
=

`2

(1 + bu2)2
+

(8− b`2)u2

(1 + bu2)2
+

12u2

1 + bu2

to rewrite the above expression for I2(b, `) in the form

I2(b, `) = 2z`(b) +
b

2

{
`2
∫ ∞
0

ρ`(u)

(1 + bu2)2
du+ (8− b`2)

∫ ∞
0

u2ρ`(u)

(1 + bu2)2
du

+ 12

∫ ∞
0

u2ρ`(u)

1 + bu2
du

}
.(4.26)

As shown before,

(4.27)

∫ ∞
0

u2ρ`(u)

1 + bu2
du =

d

db
z`(b).

Since
ρ`(u)

1 + bu2
= ρ`(u)− bu

2ρ`(u)

1 + bu2
,
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and ρ`, being a probability density, satisfies
∫∞
−∞ ρ`(u) = 1, it is seen that∫ ∞

0

ρ`(u)

1 + bu2
du =

1

2
− b

∫ ∞
0

u2ρ`(u)

1 + bu2
du =

1

2
− b d

db
z`(b).(4.28)

Differentiation (with respect to b) under the integral sign then gives∫ ∞
0

u2ρ`(u)

(1 + bu2)2
du = b

d2

db2
z`(b) +

d

db
z`(b).(4.29)

Similarly it can be shown that∫ ∞
0

ρ`(u)

(1 + bu2)2
du =

1

2
− 2b

d

db
z`(b)− b2

d2

db2
z`(b).(4.30)

Now substitute (4.27), (4.29) and (4.30) in (4.26) and simplify to obtain

I2(b, `) = b2(4− b`2)
d2

db2
z`(b) + b

(
10− 3b`2

2

)
d

db
z`(b) + 2z`(b) +

b`2

4
.(4.31)

Then substitute (4.23) and (4.31) in (4.19) to deduce that

`(`+ 2)z`+2(b) = b2(4− b`2)
d2

db2
z`(b) + 2b

(
1− 2`− 3b`2

4

)
d

db
z`(b)

+ `(`+ 1)z`(b) +
b`2

4
.(4.32)

Now let b = (x− `/2)−2 as in Theorem 1.3, so that defining

y`(x) := z`(b),

and replacing ` by `+ 2, gives z`+2((x− 1− `/2)
−2

) = y`+2(x), and hence

(4.33) z`+2(b) = y`+2(x+ 1).

A direct computation now gives

d

db
z`(b) = −1

2

(
x− `

2

)3

y′`(x),

d2

db2
z`(b) =

1

4

(
x− `

2

)6

y′′` (x) +
3

4

(
x− `

2

)5

y′`(x),(4.34)

where the prime denotes differentiation with respect to x. Finally, substitute (4.33)
and (4.34) in (4.32) to arrive at (4.18). �

Remark: The case ` = 1 of Theorem 1.3 was derived in [7, Equation (2.28)] and
an elementary proof of the case ` = 2 is given in the next section. The differential-
difference equation (4.18) then produces the values of∫ ∞

0

log(1 + bu2) ρ`(u) du

for any ` > 2.
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5. The special case ` = 2 of the generating function of the Nörlund
polynomials

In this section, we present a different proof of Theorem 1.2 for ` = 2 which was,
in fact, the genesis of this project. It involves brute force verification of Theorem
1.3 when ` = 2. It is then used along with the result in (3.22), namely,

eval{logB(2)(x)} = log |x− 1|+
∫ ∞
0

log(1 + bu2)ρ2(u) du(5.1)

with b = (x− 1)−2, and the special case of (3.21), namely,

(5.2)

∞∑
n=1

B(2)∗
n zn = −1

2
log z − 1

2
eval

{
logB(2)

(
z +

1

z

)}
.

The point to illustrate here is that these calculations soon become out of reach for
large values of `. In fact, the case ` = 3 itself required six different integrals to
be evaluated in order to arrive at Theorem 1.3 through the direct computation of
the integral. At the end of the previous section, another way of calculating these
integrals for all ` through a differential-difference equation was given. However,
this being a recursive way, not only does it not give an explicit formula but also for
higher values of `, evaluating the integrals this way is a cumbersome process. These
shortcomings are what led us to seek a new representation for eval{logB(`)(x)},
namely Theorem 1.1, which gives an explicit formula for these integrals, avoiding
messy calculations at the same time.

Proposition 5.1. Let a 6= 0 and

(5.3) I(a) =

∫ ∞
0

(x cothx− 1) log(1 + a2x2)

sinh2 x
dx.

Then

(5.4) I(a) = − log c− 1 + ψ(c) + c ψ′(c),

with c =
1

πa
.

Proof. To evaluate this integral, observe first that

(5.5)
d

dx

(
cothx− x

sinh2 x

)
=

2(x cothx− 1)

sinh2 x

and write

(5.6) I(a) =
1

2

∫ ∞
0

log(1 + a2x2)
d

dx

(
cothx− x

sinh2 x

)
dx.

In order to integrate by parts and guarantee the convergence of the boundary terms,
write the integral as

(5.7) I(a) =
1

2

∫ ∞
0

log(1 + a2x2)
d

dx

(
cothx− 1− x

sinh2 x

)
dx.

Integrate by parts and verify that the boundary terms vanish to produce

(5.8) I(a) = a2 (I1(a) + I2(a))

with

(5.9) I1(a) =

∫ ∞
0

x(1− cothx)

1 + a2x2
dx and I2(a) =

∫ ∞
0

x2 dx

(1 + a2x2) sinh2 x
.
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The evaluation of I1(a) is described first. Write it as

I1(a) = −
∫ ∞
0

e−x
x

sinhx

dx

1 + a2x2

= −2

∫ ∞
0

x dx

(1 + a2x2)(e2x − 1)

=
1

a2

[
ψ

(
1

πa

)
+
πa

2
+ log(πa)

]
using Entry 3.415.1 of [11]:∫ ∞
0

x dx

(x2 + β2)(eµx − 1)
=

1

2

[
log

(
βµ

2π

)
− π

βµ
− ψ

(
βµ

2π

)]
, Reβ > 0, Reµ > 0,

where ψ(z) = d
dz log Γ(z) is the digamma function. A direct proof of this entry and

some generalizations appear in [4].
To evaluate I2(a) write it as

I2(a) = 4

∫ ∞
0

x2e2x dx

(1 + a2x2)(e2x − 1)2
(5.10)

= −2

∫ ∞
0

x2

1 + a2x2
d

dx

(
1

e2x − 1

)
dx.

Integration by parts and a simple scaling produces

(5.11) I2(a) =
4

a4π2

∫ ∞
0

x dx

(x2 + c2)2(e2πx − 1)

with c = 1/(πa). Entry 3.415.2 in [11], established in [4], states that

(5.12)

∫ ∞
0

x dx

(x2 + β2)2(e2πx − 1)
= − 1

8β3
− 1

4β2
+

1

4β
ψ′(β),

which gives

(5.13) I2(a) = − π

2a
− 1

a2
+

1

πa3
ψ′
(

1

πa

)
.

Replacing the values of I1(a) and I2(a) in (5.8) gives the result. �

We now obtain Theorem 1.2 for ` = 2 using the above proposition. To that end,
let x = πu and a2 = b/π2 in (5.3) and use Lemma 4.16 to find that∫ ∞

0

ρ2(u) log(1 + bu2) du = ψ

(
1√
b

)
+

1√
b
ψ′
(

1√
b

)
+

1

2
log b− 1.

The above equation, along with (5.1) and the fact that b = (x− 1)−2, yields

eval
{

logB(2)(x)
}

= ψ (|x− 1|) + |x− 1|ψ′ (|x− 1|)− 1.

Hence for x ≥ 1, we have

(5.14) eval
{

logB(2)(x)
}

= ψ (x− 1) + (x− 1)ψ′ (x− 1)− 1.

Substitute this in (5.2) to obtain
(5.15)
∞∑
n=1

B(2)
n

∗
zn = −1

2
log z− 1

2

{
ψ

(
z +

1

z
− 1

)
+

(
z +

1

z
− 1

)
ψ′
(
z +

1

z
− 1

)
− 1

}
.
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This completes the proof.

6. Integrals involving Chebyshev polynomials

This section presents the evaluation of some integrals involving the Chebyshev
polynomials obtained as byproducts of the former results. The proof uses the Binet
formulas (1.13) and (1.14) for these polynomials. The discussion begins with some
preliminary results.

Lemma 6.1. Let b > 0. Then

(6.1)
d2`

du2`
log(1 + bu2) =

2(−1)`−1b`(2`− 1)!

(1 + bu2)`
T2`

(
1√

1 + bu2

)
and

(6.2)
d2`+1

du2`+1
log(1 + bu2) =

2(−1)`b`+1(2`)!u

(1 + bu2)`+1
U2`

(
1√

1 + bu2

)
.

Proof. The proof is given for the second formula. The first one can be established
by the same procedure. Successive differentiation gives

(6.3)
d2`+1

du2`+1
log(1± i

√
bu) = ± (−1)`ib`+1/2(2`)!

(1± i
√
bu)2`+1

.

Hence

d2`+1

du2`+1
log(1 + bu2) = (−1)`ib`+1/2(2`)!

{
1

(1 + i
√
bu)2`+1

− 1

(1− i
√
bu)2`+1

)
=

2(−1)`b`+1(2`)!u

(1 + bu2)`+1
U2`

(
1√

1 + bu2

)
using (1.14). �

The representation for the densities ρ`(u) given by Airault are now used to
produce some spectacular integrals involving the Chebyshev polynomials.

Theorem 6.2. Let T`(x) be the Chebyshev polynomial of the first kind. Define

(6.4) P1(u, `) =

`−1∏
j=1

(u2 + j2) and P2(u, `) =
∏̀
j=1

(
u2 +

(
j − 1

2

)2)
Then, for x > `,∫ ∞

0

{
uP1(u, `)

tanh(πu)
− u2`−1

}
T2`

(
x− `√

u2 + (x− `)2

)
du

(u2 + (x− `)2)`
=

(−1)`
(

log(x− `) +H2`−1 −
d2`−1

dx2`−1

{(
x− 1

2`− 1

)
ψ(x− `)

})
,

and for x > `+ 1
2 ,

∫ ∞
0

{
tanh(πu)P2(u, `)− u2`

}
U2`

 x− `− 1
2√

u2 + (x− `− 1
2 )2

 u du

(u2 + (x− `− 1
2 )2)`+1

=

(−1)`
(

log(x− `− 1
2 ) +H2` −

d2`

dx2`

{(
x− 1

2`

)
ψ(x− `− 1

2 )

})
.
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Proof. The details are given for the second formula. The expression for the density
functions in given by Airault in (4.12) are written as

(6.5) ρ2`+1(u) = C`

(
d

du

)2`+1

[P2(u, `) tanh(πu)]

with C` = (2(2`)!)−1. Therefore∫ ∞
0

ρ2`+1(u) log(1+bu2) du = C`

∫ ∞
0

log(1+bu2)

(
d

du

)2`+1

[P2(u, `) tanh(πu)] du

= C`

∫ ∞
0

log(1 + bu2)
d

du

[(
d

du

)2`

[P2(u, `) tanh(πu)]

]
du.

In order to integrate by parts, the boundary terms at +∞ need to be modified.
Observe that(
d

du

)2`

[P2(u, `) tanh(πu)] =

2∑̀
j=0

(
2`

j

)(
d

du

)j
[tanh(πu)]

(
d

du

)2`−j

[P2(u, `)]

= (2`)! tanh(πu) +
2∑̀
j=1

(
2`

j

)(
d

du

)j
[tanh(πu)]

(
d

du

)2`−j

[P2(u, `)]

The terms coming from derivatives of tanh(πu) in the second sum are polynomials
in sech2u, without a constant term. The terms coming from P2(u, `) are polynomials
in u. It follows that the whole second sum vanishes as u→ +∞. Then∫ ∞

0

ρ2`+1(u) log(1 + bu2) du

= C`

∫ ∞
0

log(1 + bu2)
d

du

[(
d

du

)2` [
P2(u, `) tanh(πu)− u2`

]]
du.

and now integration by parts gives∫ ∞
0

ρ2`+1(u) log(1 + bu2) du

= C`

∫ ∞
0

[
P2(u, `) tanh(πu)− u2`

]( d

du

)2`+1

log(1 + bu2) du.

Now use Theorem 1.3 to evaluate the integral on the left-hand side and Lemma 6.1
to obtain the result. �

7. Relations to the Hurwitz and Barnes zeta functions

This section expresses the densities ρ`(x) in terms of the Hurwitz zeta function.
This is the used to produce the closed-form evaluations of some integrals involving
the Hurwitz zeta function.

Definition 7.1. Let N ∈ N and w, s ∈ C with Rew > 0, Re s > N . The Barnes
zeta function is defined by the series

(7.1) ζN (s, w|a1, · · · , aN ) =

∞∑
m1,··· ,mN=0

(w +m1a1 + · · ·+mNaN )−s.
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This function was introduced in [3] and contains, as the special case N = 1 and
a1 = 1, the Hurwitz zeta function

(7.2) ζ(s, w) =

∞∑
n=0

1

(n+ w)s
.

A class of definite integrals connected to ζ(s, w) was described in [8, 9]. In partic-
ular, the classical identity of Lerch [11, entry 9.533.3]

(7.3)
d

dz
ζ(z, q) |z=0 = log Γ(q)− log

√
2π

gives the classical evaluation

(7.4)

∫ 1

0

log Γ(z) dz = log
√

2π

given by L. Euler, as well as

(7.5)

∫ 1

0

log2 Γ(z) dz =
γ2

12
+
π2

48
+

1

3
γ log

√
2π +

4

3

(
log
√

2π
)2

− (γ + 2 log
√

2π)
ζ ′(2)

π2
+
ζ ′′(2)

2π2
.

The corresponding evaluations for the integrals of log` Γ(z), for ` = 3, 4 are more
complicated and they involve multiple-zeta values. In particular, the existence of
formulas for ` ≥ 5, remains an open problem. See [2] for details.

The connection between the Hurwitz zeta function and the densities ρ`(x) is
based on an integral representation of the Barnes zeta function given by S. N. M.
Ruijsenaars [14, p. 121]. Introducing the notation AM = 1

2 (a1+· · ·+aM ), it is shown
in [14] that if δ > −AM , the Barnes zeta function has the integral representation

(7.6) ζM (s,AM + δ + iz|a1, · · · , aM ) =
21−M

Γ(s)

∫ ∞
0

(2y)s−1e−2δy∏
1≤j≤M sinh(ajy)

e−2izydy

for Re s > M and Im z < AM + δ. Now choose n ∈ N and consider the special case
δ = 0, M = `, s = `+ 1 and aj = 1 for 1 ≤ j ≤M . This yields the identity

(7.7) ζ`(`+ 1, `2 + iz|1, · · · , 1) =
2

`!

∫ ∞
0

e−2izy
(

y

sinh y

)`
dy.

The next result gives a new representation for the density ρ`(x) in terms of the
Barnes zeta function. The proof comes directly from (4.6).

Proposition 7.2. Let

(7.8) ζ`(m, z) = ζ`(m, z|1, · · · , 1).

Then the density function ρ`(x) is given by

(7.9) ρ`(x) =
`!

2π

(
ζ`(`+ 1, `2 + ix) + ζ`(`+ 1, `2 − ix)

)
.

The next representation for the densities ρ`(x) comes from a result of J. Choi
[5, Equation (2.5)], which expresses ζ`(s, w) as a finite linear combination of the
Hurwitz zeta function, in the form

(7.10) ζ`(s, w) =

`−1∑
j=0

p`,j(w)ζ(s− j, w)
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where

(7.11) p`,j(w) =
(−1)`+1−j

(`− 1)!

`−1∑
m=j

(
m

j

)
s(`,m+ 1)wm−j ,

where s(`,m) is the Stirling number of the first kind. Then (7.9) leads to

(7.12) ρ`(x) =
`(−1)`+1

2π

`−1∑
j=0

(−1)j
`−1∑
m=j

(
m

j

)
s(`,m+ 1)

×

{(
`

2
+ ix

)m−j
ζ

(
`+ 1− j, `

2
+ ix

)
+

(
`

2
− ix

)m−j
ζ

(
`+ 1− j, `

2
− ix

)}
.

It follows that the logarithmic moment can be expressed as∫ ∞
0

ρ2`(u) log

(
1 +

u2

(x− `)2

)
du =

2`

π

`−1∑
j=0

(−1)j−1
2`−1∑
m=j

s(2`,m+ 1)

× Re

∫ ∞
0

{
(`+ iu)m−jζ(2`+ 1− j, `+ iu)

}
log

(
1 +

u2

(x− `)2

)
du.

Now replace ` by 2` in (3.22) and Theorem 1.1, equate their right-hand sides,
and use the above identity to arrive at first of the following two identities. The
second one is similarly proved.

Theorem 7.3. Let ζ(s, w) denote the Hurwitz zeta function and s(`,m) the Stirling
numbers of the first kind. Define

z`(m, j)(x) = 2 Re

∫ ∞
0

(`+ iu)m−jζ(2`+ 1− j, `+ iu) log

(
1 +

u2

(x− `)2

)
du

and

Z`(m, j)(x) = 2 Re

∫ ∞
0

(`+ 1
2+iu)m−jζ(2`+2−j, `+ 1

2+iu) log

(
1 +

u2

(x− `− 1
2 )2

)
du

Then, for x > `,

2`−1∑
j=0

(−1)j−1
2`−1∑
m=j

(
m

j

)
s(2`,m+ 1)z`(m, j)(x) =

− π

`

(
log(x− `) +H2`−1 −

d2`−1

dx2`−1

{(
x− 1

2`− 1

)
ψ(x− `)

})
,

and x > `+ 1
2 ,

2∑̀
j=0

(−1)j
2∑̀
m=j

(
m

j

)
s(2`+ 1,m+ 1)Z`(m, j)(x) =

− 2π

2`+ 1

(
log
(
x− `− 1

2

)
+H2` −

d2`

dx2`

{(
x− 1

2`

)
ψ
(
x− `− 1

2 )
)})

.
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Inverting these systems of equations to obtain expressions for Yn(m, j) and
Zn(m, j) is an open problem.
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