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Abstract. A new iterative method for numerical integration of rational func-
tions on the real line is presented. The algorithm transforms the rational in-
tegrand into a new rational function preserving the integral on the line. The
coefficients of the new function are explicit polynomials in the original ones.
These transformations depend on the degree of the input and the desired order
of the method. Both parameters are arbitrary. The formulas can be precom-
puted. Iteration yields an approximation of the desired integral with m-th
order convergence. Examples illustrating the automatic generation of these
formulas and the numerical behaviour of this method are given.

1. Introduction

The numerical integration of the elliptic integral

(1.1) G(a, b) =

∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ

can be accomplished by iterating the transformation

(1.2) Le : R
2 → R

2, (a, b) 7→
(

a + b

2
,
√

ab

)

.

Gauss [6] established that G(a, b) is invariant under the transformation Le, i.e.,

(1.3) G(Le(a, b)) = G(a, b).

Moreover, the iterates (an, bn) defined recursively by (a0, b0) = (a, b) and (an, bn) =
Le(an−1, bn−1) for n ≥ 1, satisfy

(1.4) |an+1 − bn+1| ≤
1

2
|an − bn|2,

illustrating the quadratic convergence of an and bn to a common limit AGM(a, b).
This is the arithmetic-geometric mean of a and b. Le is known as the elliptic Landen

transformation. The reader will find in [8] a survey of the diverse aspects of this
transformation and its generalizations.

The invariance of the integral G(a, b) under Le yields

(1.5) G(a, b) =
π

2
AGM−1(a, b).

In particular, the value of the elliptic integral G(a, b) can be approximated using the
iterates an (or bn). The functions G(a, b) and AGM(a, b) along with the formula
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(1.5), are at the center of highly effective computation of the basic constants of
Analysis [2].

A scheme for the computation of the rational integral

(1.6) F (a, b) =

∫ ∞

−∞

b0x
p−2 + . . . + bp−3x + bp−2

a0xp + . . . + ap−1x + ap
dx,

with a = (a0, a1, . . . , ap), b = (b0, b1, . . . , bp−2), is presented here. Rational Landen

transformations

Lm,p : C
2p → C

2p, (a, b) 7→ Lm,p(a, b)

which preserve the integral F (a, b) are constructed. Iteration of Lm,p yields a
sequence of coefficients (an,0, an,1, · · · , an,p) and (bn,0, bn,1, · · · , bn,p−2) for a se-
quence of rational functions which are shown to converge to a constant multiple of
1/(x2 + 1). The invariance of the integral F (a, b) under Lm,p yields

(1.7) F (a, b) = c

∫ ∞

−∞

dx

x2 + 1
= πc = π lim

n→∞

an,0

bn,0
,

that determines the constant c. The sequence {πan,0/bn,0 : n = 1, 2, 3 . . .} of ap-
proximations to the integral F (a, b) converges with order m; that is, the error

en :=

∣

∣

∣

∣

π
an,0

bn,0
− F (a, b)

∣

∣

∣

∣

satisfies

(1.8) |en+1 − en| ≤ C|en − en−1|m

with an absolute constant C.
The outlined algorithm for computing rational integrals over the real line, pre-

sented in more detail in Section 8, consists of the two parts:

• Creation of the rational Landen transformation Lm,p where m is the de-
sired order of convergence and p is the degree of the denominator of the
rational function to be integrated. This is discussed in Sections 3 and 4.

• Iteration of the Landen transformation, which is analyzed in Sections 5
and 8 with the view towards complexity and implementation, respectively.

Numerical examples of this method are discussed in Section 6.

Remark 1.1. Given m and p, the map Lm,p can be precomputed and the result can
be stored for use in the second part of the algorithm. Therefore, the first part of
the algorithm carries a one-time cost and is not figured into the complexity of the
method which is discussed in Section 5.

Remark 1.2. The numerical method for the integration of rational functions pre-
sented here is different in spirit than the standard ones: the approximation to the
integral is obtained from a recurrence acting on the coefficients of the integrand. In
particular, the domain of integration is not discretized and the integrand is never
evaluated. Examples that illustrate the method and a complete study of the cost
involved are presented.

Future work. The algorithm presented here is restricted to integrals on the whole
line. The extension to a finite interval requires the development of Landen trans-
formations on the half line. This question is open, even for the simplest case of

(1.9) I2(a, b, c) :=

∫ ∞

0

dx

ax2 + bx + c
.
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The method has been coupled with Pade approximations [1] to produce a fast,
robust integration algorithm for some non-rational integrands; namely, those of the
form R(µ(x))µ′(x) for a rational function R and an increasing change of scale µ.
Extensions to all smooth integrands remain to be completed.

2. Some preliminary examples

In this section we present examples that illustrate the general theory. The first
two examples show the transformations L2,2 and L3,4. Both maps are given by
polynomial functions.

Example 2.1. The rational Landen transformation L2,2 is given by

(2.1) L2,2(b0, a0, a1, a2) = (b′0, a
′
0, a

′
1, a

′
2),

with

b′0 = 2a0b0 + 2a2b0,

a′
0 = 4a0a2,

a′
1 = −2a0a1 + 2a1a2,

a′
2 = a2

0 − a2
1 + 2a0a2 + a2

2.

Example 2.2. The rational Landen transformation L3,4 is computed as

(2.2) L3,4(b0, b1, b2, a0, a1, a2, a3, a4) = (b′0, b
′
1, b

′
2, a

′
0, a

′
1, a

′
2, a

′
3, a

′
4)

with

b′0 = 3a2
0b0 − a2

1b0 + 10a0a2b0 + 3a2
2b0 − 6a1a3b0 − 9a2

3b0 + 30a0a4b0

+18a2a4b0 + 27a2
4b0 − 8a0a1b1 − 24a0a3b1 + 8a2

0b2 + 24a0a2b2

+72a0a4b2,

b′1 = 24a0a3b0 + 8a2a3b0 − 16a1a4b0 − 24a3a4b0 + 9a2
0b1 − 3a2

1b1

+6a0a2b1 + a2
2b1 − 10a1a3b1 − 3a2

3b1 − 46a0a4b1 + 6a2a4b1 + 9a2
4b1

−24a0a1b2 + 8a1a2b2 − 16a0a3b2 + 24a1a4b2,

b′2 = 72a0a4b0 + 24a2a4b0 + 8a2
4b0 − 24a1a4b1 − 8a3a4b1 + 27a2

0b2 − 9a2
1b2

+18a0a2b2 + 3a2
2b2 − 6a1a3b2 − a2

3b2 + 30a0a4b2 + 10a2a4b2 + 3a2
4b2,

and

a′
0 = a3

0 − 3a0a
2
1 + 6a2

0a2 + 9a0a
2
2 − 18a0a1a3 − 27a0a

3
3 + 18a2

0a4 + 54a0a2a4

+81a0a
2
4,

a′
1 = 3a2

0a1 − a3
1 − 6a0a1a2 + 3a1a

2
2 + 24a2

0a3 − 6a2
1a3 + 24a0a2a3 − 9a1a

2
3

−66a0a1a4 + 18a1a2a4 − 72a0a3a4 + 27a1a
2
4,

a′
2 = 9a2

0 − 3a2
1a2 + 6a0a

2
2 + a3

2 − 24a0a1a3 + 6a1a2a3 − 24a0a
2
3 − 3a2a

2
3

+96a2
0a4 − 24a2

1a4 + 114a0a2a4 + 6a2
2a4 − 24a1a3a4 + 96a0a

2
4 + 9a2a

2
4,

a′
3 = 27a2

0a3 − 9a2
1a3 + 18a0a2a3 + 3a2

2a3 − 6a1a
2
3 − a3

3 − 72a0a1a4 + 24a1a2a4

−66a0a3a4 − 6a2a3a4 + 24a1a
2
4 + 3a3a

2
4,

a′
4 = 81a2

0a4 − 27a2
1a4 + 54a0a2a4 + 9a2

2a4 − 18a1a3a4 − 3a2
3a4 + 18a0a

2
4

+6a2a
2
4 + a3

4.
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The point to be made here is that, while the formulas for the transformations Lm,p

grow in size as m and p increase, these formulas only have to be computed once.

Remark 2.3. The rational Landen transformations Lm,p are given by polynomial
equations which are homgeneous of degree m. Furthermore, the a′

i depend only on
the ai.

Remark 2.4. The invariance of F (a, b) under Lm,p implies that the set

(2.3) R = {(a, b) ∈ R
2p : F (a, b) is finite}

is preserved by Lm,p. The action of Lm,p outside of R is difficult to analyze. The
reader will find in [9] some illustrations for L2,6.

Remark 2.5. The dynamical study of L2,6 appeared in [4]. An extension of this
work to L3,6 and L4,6 will appear in [3] and [5], respectively.

Example 2.6. Iterating L2,2 with initial conditions a0,i = ai, b0,i = bi yields a
sequence (bn,0, an,0, an,1, an,2), defined by

(2.4) (bn+1,0, an+1,0, an+1,1, an+1,2) := L2,2(bn,0, an,0, an,1, an,2),

which satisfies
∫ ∞

−∞

bn,0 dx

an,0x2 + an,1x + an,2
=

∫ ∞

−∞

b0 dx

a0x2 + a1x + a2
.

The convergence result in Section 7 shows that

(2.5)
bn,0

an,0x2 + an,1x + an,2
∼ bn,0

an,0

1

x2 + 1

as n → ∞. Furthermore the convergence is quadratic. Therefore,

(2.6)

∫ ∞

−∞

b0 dx

a0x2 + a1x + a2
= π lim

n→∞

bn,0

an,0
.

For instance, starting with 1/(x2+4x+15), the algorithm produces L2,2(1, 1, 4, 15) =
(32, 60, 112, 240). Hence,

∫ ∞

−∞

dx

x2 + 4x + 15
=

∫ ∞

−∞

32 dx

60x2 + 112x + 240
.

The first two terms of the approximating sequence In = πan,0/bn,0 are given by

I0 = π and I1 = 32π/60. These approximations converge to π/
√

11, the exact

value of the integral. The error |In − π/
√

11| and the relative approximate error
|(In − In−1)/In| are given in Table 1.

3. The Landen transformation

The creation of the rational Landen transformation formulas depends on two
polynomial sequences. Let m ≥ 2 be an integer. Define the polynomials

Pm(x) =

⌊m/2⌋
∑

j=0

(−1)j

(

m

2j

)

xm−2j(3.1)

Qm(x) =

⌊(m−1)/2⌋
∑

j=0

(−1)j

(

m

2j + 1

)

xm−(2j+1),
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n |In − π/
√

11| |(In − In−1)/In|
1 0.7283 0.6000
2 0.09997 0.1470
3 0.03425 0.03574
4 0.0004197 0.0004417
5 1.218× 10−6 1.286 × 10−6

6 5.272 × 10−13 5.566× 10−13

7 2.759 × 10−25 2.913× 10−25

Table 1. Absolute and relative approximate errors for a method
of order 2.

that come from the relation

(3.2) cot(mθ) = Rm(cot θ)

satisfied by Rm = Pm/Qm. Details about these polynomials can be found in [7].
Let A, B be polynomials. The change of variables y = Rm(x) yields a new pair

of polynomials A1, B1 such that

(3.3)

∫ ∞

−∞

B1(x)

A1(x)
dx =

∫ ∞

−∞

B(x)

A(x)
dx.

The change of variables requires us to split the domain according to the branches
of the inverse R−1

m . These are specified by the intervals (qj−1, qj) where q0 = −∞,
qj = cot(πj/m) for 1 ≤ j ≤ m − 1, and qm = +∞. The function y = Rm(x) is
invertible on each of the subintervals (qj−1, qj), and the (local) inverse is denoted
by x = ωj(y). After substituting y = Rm(x) in each interval, it follows that

(3.4)

∫ ∞

−∞

B(x)

A(x)
dx =

m
∑

j=1

∫ qj

qj−1

B(x)

A(x)
dx =

∫ ∞

−∞

m
∑

j=1

B(ωj(y))

A(ωj(y))
ω′

j(y)dy.

The integrand on the right-hand side of (3.4) is indeed a rational function B1/A1;
see [7]. The rational Landen transformation Lm : C(x) → C(x) is defined by
B/A 7→ B1/A1.

The case m = 2 is described explicitly in the next example.

Example 3.1. The function

R2(x) =
x2 − 1

2x

has two local inverses: x±(y) = y ±
√

y2 + 1; one for (−∞, 0) and the second one
for (0,∞), both mapping the corresponding half-line to (−∞,∞). Therefore,

∫ ∞

−∞

B(x)

A(x)
dx =

∫ 0

−∞

B(x)

A(x)
dx +

∫ ∞

0

B(x)

A(x)
dx

=

∫ ∞

−∞

B(x−(y))

A(x−(y))

dx−(y)

dy
+

B(x+(y))

A(x+(y))

dx+(y)

dy
dy.

Collecting terms, it follows that

(3.5)

∫ ∞

−∞

B(x)

A(x)
dx =

∫ ∞

−∞

B1(x)

A1(x)
dx
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where
(3.6)

B1(y) = A+(y)B−(y) + A−(y)B+(y) +
y

√

y2 + 1
(A−(y)B+(y) − A+(y)B−(y)) .

and A±(y) := A(x±(y)), A1(y) = A+(y)A−(y). An elementary argument shows
that A1 and B1 are polynomials in y and that deg A1 = deg A.

The explicit evaluation of Lm in terms of radicals is not possible for m ≥ 5 and
very cumbersome for m = 3 and 4. The equation y = Rm(x) requires the solution
of a polynomial equation of degree m, as described in Example 3.1 for m = 2. The
explicit formulas for m = 3 and m = 4 are described in [3] and [5], respectively.
Section 4 outlines the construction of Lm without inverting Rm.

4. Generation of the coefficient formulas

In this section the explicit construction of Lm for m ≥ 2 is outlined. Given a
pair of polynomials (A, B), this map produces a new pair (A1, B1) such that

(4.1)

∫ ∞

−∞

B1(x)

A1(x)
dx =

∫ ∞

−∞

B(x)

A(x)
dx.

Complete details appear in [7].

Step 1: The rational function Rm = Pm/Qm comes from (3.1). First con-
struct the polynomial

(4.2) A1(x) := Res (A, Pm − xQm)

where Res denotes the resultant. The degrees of the polynomials involved
are p := degA and m = deg(Pm − xQm), respectively. The degree of the
denominator is preserved; that is, deg(A1) = deg(A). The coefficients of
A1 are polynomials in those of A.

Step 2: The polynomial

(4.3) Em(x) := [Pm(x)]
p
A1(Rm(x))

is a multiple of A. Compute the quotient

C(x) := E(x)
B(x)

A(x)
=

s
∑

k=0

ckxs−k,

with s := mp − 2.
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Step 3: Define the expressions

Tx(a, b) :=

x
∑

j=0

(−1)a−x+j

(

a

x − j

)(

b

j

)

,

M1(j, α, β, γ) := (−1)j+α−βc2j
22(α−β)α

2α − β

(

2α − β

β

)(

ν − α − 1 + β

γ

)

×

× (Tλ+αm(2j, s − 2j) + Tλ−αm(2j, s − 2j)) ,

M2(j, α, β, γ) := (−1)j+βc2j+12
2β+1

(

α + β

2β + 1

)(

ν − 2 − β

γ

)

×

× (Tλ+αm(2j + 1, s − 2j − 1) − Tλ−αm(2j + 1, s − 2j − 1)) ,

where ν := p/2 and λ := (mp − 2)/2.

Step 4: Define

B1(x) :=
1

2s

ν−1
∑

γ=0





(

ν − 1

γ

) λ
∑

j=0

(−1)jc2jTλ(2j, s − 2j)



 x2γ

+
1

2s

ν−2
∑

γ=0





λ
∑

j=0

ν−1−γ
∑

α=1

α
∑

β=0

M1(j, α, β, γ)



 x2γ

+
1

2s

ν−1
∑

γ=1





λ
∑

j=0

ν−1
∑

α=ν−γ

α
∑

β=α−ν+γ+1

M1(j, α, β, γ)



 x2γ

+
1

2s

ν−2
∑

γ=0





λ−1
∑

j=0

ν−1−γ
∑

α=1

α−1
∑

β=0

M2(j, α, β, γ)



 x2γ+1

+
1

2s

ν−2
∑

γ=1





λ−1
∑

j=0

ν−1
∑

α=ν−γ

α−1
∑

β=0

M2(j, α, β, γ)



 x2γ+1.

The following theorem has been established in [7].

Theorem 4.1. The rational function B1/A1 satisfies

(4.4)

∫ ∞

−∞

B1(x)

A1(x)
dx =

∫ ∞

−∞

B(x)

A(x)
dx

whenever one of the integrals is finite. Moreover, in that case, deg A1 = deg A and

deg B1 ≤ deg A1 − 2.

Definition 4.1. The rational Landen transformation Lm : C(x) → C(x) is defined
by

(4.5) Lm(B/A) = B1/A1

and by

(4.6) Lm,p = Lm,p(b0, b1, . . . , bp−2, a0, a1, . . . , ap)

when Lm is acting on the coefficients of a rational function of degree p.
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Any rational function of degree p can be also be seen as one of degree p + 1 by
adding an extra zero as leading coefficients both in the numerator and denominator.
The identity

Lm,p+1(0, b0, b1, . . . , bp−2, 0, a0, a1, . . . , ap) = Lm,p(b0, b1, . . . , bp−2, a0, a1, . . . , ap)

shows that consistency of the map Lm,p under this formal change of degree.

Example 4.2. The previous steps, applied to the polynomials

B(x) = b0, A(x) = a0x
2 + a1x + a2

produce B1(x) = 2a0b0 + 2a2b0 as well as

A1(x) = 4a0a2x
2 + (−2a0a1 + 2a1a2)x + a2

0 − a2
1 + 2a0a2 + a2

2.

This gives the expression for L2,2 in Example 2.1.

Precomputed formulas for the Lm,p as well as a program written in Mathemat-
ica that generates these formulas following the above algorithm and featuring the
numerical integration of rational functions over the real line, as outlined in the
introduction, is available for download from the authors. Some details of the im-
plementation will be discussed in Section 8.

5. Complexity of the algorithm

This section discusses the complexity of computing definite integrals using Lan-
den transformations. The analysis is restricted to the cost of one iteration. The
actual generation of the Landen transformation is not considered since it is a one-
time cost.

Examples 2.1 and 2.2 illustrate the fact that Lm,p is a mapping C2p → C2p

defined by polynomial equations with integer coefficients. Assume that these poly-
nomial equations appear in expanded form. The number of multiplications cm,p

involved in computing Lm,p not including multiplications with constants is now
counted. Additions and multiplying with constants have lower complexity than
multiplication, so they are not included in this count.

Example 5.1. Example 2.1 gives L2,2(b0, a0, a1, a2) = (b′0, a
′
0, a

′
1, a

′
2) with

b′0 = 2a0b0 + 2a2b0,

a′
0 = 4a0a2,

a′
1 = −2a0a1 + 2a1a2,

a′
2 = a2

0 − a2
1 + 2a0a2 + a2

2.

Hence, L2,2 requires c2,2 = 9 multiplications. Some values of cm,p are now given in
Table 2. The missing numbers, c5,14 and c5,16, are too expensive to compute.

The data above suggest that cm,p = O(pm+1). Moreover, for m = 2 and m = 3
the number of multiplications cm,2p seem to be exactly

c2,2p =
1

2
(p + 1)

(

2 + 3p + 4p2
)

,

c3,2p =
2

3
p
(

15 + 13p + 12p2 + 8p3
)

.
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p\m 2 3 4 5

2 9 32 75 144
4 36 204 702 1896
6 94 756 3492 12040
8 195 2056 11895 49712
10 351 4600 31923 156512
12 574 9012 72858 409688
14 876 16044 147984 **
16 1269 26576 275295 **

Table 2. Number of operations involved in Lm,p.

Remark 5.2. As noted in Remark 2.3, the Landen transformation Lm,p only in-
volves monomials of degree m. Therefore, cm,p is the number of these monomials
times m− 1. Writing the polynomial expressions defining Lm,p in a different form,
one may hope to decrease the cost of its computation. Experiments conducted
in Mathematica show that writing these polynomials in multivariate Horner form
decreases the order of growth to O(pm).

Remark 5.3. From a practical point of view, the Landen transformations of order 2
are generally preferable to higher order ones. This is because combining n Landen
iterations L2,p into one step (via the formula) Ln

2,p = L2n,p gives a method of
order 2n which requires nc2,p multiplications. Multiple experiments show that
nc2,p ≪ c2n,p.

6. Some numerical examples

In this section some examples that illustrate the procedure described in this work
are presented.

Example 6.1. The method proposed here is applicable to problems that are nearly
singular, that is, to rational functions with poles arbitrarily close to the real axis.
For fixed ǫ > 0, apply L2,2 to the rational function

f0(x) =
1

(x − 1)2 + ǫ2
=

1

x2 − 2x + (1 + ǫ2)
.

This generates a sequence of rational functions of the form

fn(x) = Ln
2f(x) =

bn,0

an,0x2 + an,1x + an,2
,

each of which satisfies
∫ ∞

−∞

fn(x)dx =
π

ǫ

by Theorem 4.1. As shown in Corollary 7.4,

bn,0

an,0
→ 1

ǫ
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as n → ∞. For decreasing values of ǫ the number of steps n(ǫ) needed so that the
relative error |ǫbn(ǫ),0/an(ǫ),0 − 1| is less than 10−20 can be found in Table 3. The
calculations were made with a precision of 50 digits.

ǫ 10−1 10−2 10−3 10−4 10−5

n(ǫ) 9 13 16 19 23

Table 3. Number of steps needed to get relative error less than 10−20.

Example 6.2. This example illustrates the behavior on highly oscillatory inte-
grands. A Landen transformation of order 2 is now applied to the rational function

fk(x) =
2kPk(x/2)

(

k
⌊k/2⌋

)

(x2k + 1)
,

where Pk is the Legendre polyomial. The normalization factor is chosen so that
|fk(0)| = 1 for even k.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. The oscillatory rational function f50(x)

The number of steps n(k) needed for the relative error to drop below 10−20 is
tabulated. The calculations were made with a precision of 50 digits.

k 2 4 6 8 10 20 30 40 50
n(k) 6 7 8 8 9 10 10 11 11

Table 4. Number of steps needed to get relative error less than 10−20.
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7. Convergence of Landen iterates

In this section the convergence of the iterates of the Landen transformation Lm,p

starting at the rational function

(7.1) f(x) =
B(x)

A(x)
=

b0x
p−2 + . . . + bp−3x + bp−2

a0xp + . . . + ap−1x + ap

is considered. Denote by fn = Bn/An the Landen iterates Ln
m,p(f). Assuming that

f has no poles on the real line, Theorem 7.4 shows that, as n → ∞,

(7.2) Ln
m,pf → c

x2 + 1
,

where c is determined by the integral of the initial value. Moreover, convergence
is of order m. This implies the convergence of the coefficients of An = an,0x

p +
an,1x

p−1 + . . . + an,p and Bn = bn,0x
p−2 + bn,1x

p−3 + . . . + bn,p−2 as described in
the following proposition.

Proposition 7.1. Let λ+ be the number of roots of A with positive imaginary
part and λ− the number of roots with negative imaginary part (note that λ+ + λ−

is the degree of A). Then for the constant c defined in (7.2)

Bn

an,0
→ c(x − i)λ+−1(x + i)λ−−1,

An

an,0
→ (x − i)λ+(x + i)λ− .

Note that the constant c in (7.2) vanishes if either λ+ = 0 or λ− = 0.

Proof. The proof is given for m = 2, the general case can be established by similar
methods. Recall that the denominator An only depends on A and it is transformed
according to

(7.3) An+1(x) = Resz(An(z), z2 − 2xz − 1).

Hence, if An/an,0 =
∏

k(x − λn,k) then

An+1/an,0 =
∏

k

(

λ2
n,k − 2λn,kx − 1

)

.

Therefore the roots of An+1(x) are λn+1,k =
λ2

n,k−1

2λn,k
. Note that

Im

(

λ2 − 1

2λ

)

=
1

2

(

1 +
1

|λ|2
)

Im(λ),

which implies that the signs of the imaginary part of the roots of A are preserved by
the Landen iterations. In particular, this shows that the integrablity of a rational
function is preserved by Lm,p.

The transformation λ 7→ λ2 − 1

2λ
= λ − λ2 + 1

2λ
is the Newton map of λ2 + 1.

Therefore, each root λn,k converges to i or −i depending on the sign of Imλ1,k.
Furthermore, the Newton map is known to exhibit quadratic convergence. This
establishes the result about An. Theorem 7.4 shows that Bn/An → c/(x2 + 1).
This gives the corresponding result for Bn. �

Corollary 7.2. If A has only real coefficients, then p is even and

Bn

an,0
→ c(x2 + 1)p/2−1,

An

an,0
→ (x2 + 1)p/2.
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Remark 7.1. An explicit and curious formula for the denominator A1 of L2(1/A)
is described next. This is an expression independent of the roots of A. In the
computation of A1(x) = Resz(A(z), z2−2xz−1), reduce A(z) modulo z2−2xz−1
before computing the resultant. Proceeding in a recursive manner, write zn ≡
an(x) + bn(x)z. Then z2 ≡ 1 + 2xz leads to the recurrence

an+1(x) = bn(x), bn+1(x) = an(x) + 2xbn(x).

Therefore zn ≡ bn−1(x) + bn(x)z where bn(x) is defined by

(7.4) bn+1(x) = 2xbn(x) + bn−1(x), b0 = 0, b1 = 1.

It follows that zn ≡ Fn−1(2x) + Fn(2x)z where Fn(x) is the nth Fibonacci poly-

nomial. These polynomials are defined recursively by F0(x) = 0, F1(x) = 1 and
Fn+1(x) = xFn(x) + Fn−1(x) and they are explicitely given by

Fn+1(x) =

⌊n/2⌋
∑

k=0

(

n − k

k

)

xn−2k.

If A(z) =
∑

akzk then A(z) ≡ a(x) + b(x)z for a(x) =
∑

akFk−1(2x) and
b(x) =

∑

akFk(2x). It follows that

A1(x) = a(x)2 − b(x)2 + 2a(x)b(x)x

= a(x)(a(x) + 2xb(x)) − b(x)2

=
(

∑

akFk−1

)(

∑

akFk+1

)

−
(

∑

akFk

)2

where Fk is used to abbreviate Fk(2x).

Remark 7.2. The proof of Proposition 7.1 contains explicitly the transformation
of the denominator under the Landen transformation L2 in terms of its roots. In
particular,

L2

(

1

x − λ

)

=
−2λ

−2λx + λ2 − 1
=

1

x − λ2−1
2λ

.

For a rational function f = B/A, with no repeated poles off the real line and
deg(B) ≤ deg(A) − 2, consider the partial fraction decomposition f =

∑

k bk/(x −
λk). Then, by linearity of L2,

(7.5) L2(f) = L2

(

∑

k

bk

x − λk

)

=
∑

k

bk

x − λ2
k
−1

2λk

.

Assume that the poles of Ln
2 (f) remain simple. Then

(7.6) Ln
2f →

∑

k

bk

x − λ∞,k

where λ∞,k is either i or −i depending on the sign of Imλk. Theorem 4.1 shows that
the Landen transformations preserve the condition among the degrees of numerators
and denominators described above. Thus

Ln
2f → c+

x − i
+

c−
x + i

=
c

x2 + 1
.
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The general proof requires some machinery from complex analysis. To this end,
identify the integral of the rational function f = B/A over the real line with the
integral of the holomorphic 1-form φ = f(z)dz over the real projective line RP 1;
that is,

∫ ∞

−∞

f(x)dx =

∫

RP 1

φ,

where RP 1 is the completed real axis sitting inside the Riemann sphere CP 1. Recall
that f being a rational function corresponds to a holomorphic function on CP 1.

The next required concept is that of a pull-back of a holomorphic 1-form. After
the definition, recall the change of variables formula that connects the integral of a
1-form to that of its pull-back. The reader will find all these concepts in [10].

Definition 7.3. Let φ be a 1-form on a Riemann surface S, and π : S → T a
holomorphic mapping between Riemann surfaces. The pull-back of φ induced by π
is defined as

π∗φ|U =

k
∑

i=1

σ∗
i φ,

on all U ⊂ T simply connected and containing no critical values of π. Here
σ1, ..., σk : U → S are the distinct sections of π.

It is an elementary consequence of this definition that for holomorphic mappings
π1 : S2 7→ S3 and π2 : S1 7→ S2,

π1∗π2∗φ = (π1 ◦ π2)∗φ

for any 1-form φ on S1. The next lemma concerning holomorphic pull-backs and
their path integrals is again an immediate consequence of the definition.

Lemma 7.3. If π : S → T is a holomorphism of Riemann surfaces, and φ is a

holomorphic 1-form on S, then π∗φ is a holomorphic 1-form on T . Furthermore,

for any oriented rectifiable curve γ on T , the identity

(7.7)

∫

γ

π∗φ =

∫

π−1γ

φ

holds.

Let f = B/A be a rational function. The pull-back of the 1-form φ = f(z)dz on
CP 1 induced by Rm : CP 1 → CP 1 is the 1-form

(Rm)∗φ =

m
∑

j=1

B(ωj(y))

A(ωj(y))
ω′

j(y)dy.

Note that the right-hand side of (3.4) is precisely the integral of (Rm)∗φ over the
projective real line. In this case, Lemma 7.3 amounts to (3.4). The map Lm may
therefore be identified with (Rm)∗. The following is a restatement of (7.2).

Theorem 7.4. Let φ be a holomorphic 1-form in a neighborhood U of RP 1 ⊂ CP 1.

Then

lim
n→∞

(Rm)n
∗φ =

1

π

(∫

RP 1

φ

)

dz

z2 + 1

where the convergence is of order m and uniform on compact subsets of U .
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Remark 7.5. Let f = B/A be a rational function such that its integral over the
real line is finite. Then the 1-form f(z)dz on CP 1 is holomorphic on some open
set U ⊃ RP 1. In particular, for β = min{| Im x| : A(x) = 0}, and N = max{|x| :
A(x) = 0}, f(z)dz is holomorphic on

Vǫ = {x ∈ CP 1 : | Im x| < β − ǫ} ∪ {x ∈ CP 1 : |x| > N + ǫ}
for all ǫ < β.

A statement equivalent to Theorem 7.4 is proved now. This follows from conju-
gation by the map M(z) = z+i

z−i . Recall that Rm = M−1 ◦ fm ◦ M , see for instance

[7], where fm(z) = zm, so that Rn
m = M−1 ◦ fn

m ◦ M and therefore

lim
n→∞

(Rm∗)
nφ = M−1

∗ lim
n→∞

(fm∗)
nφ1

where φ1 = M∗φ. On the other hand, one verifies that

M∗
dz

z2 + 1
= − dz

2iz
.

Finally, observe that, by Lemma 7.3,
∫

RP 1

φ =

∫

RP 1

M−1
∗ φ1 = −

∫

S1

φ1

where S1 denotes the path that rotates once around the unit circle in counterclock-
wise direction. Theorem 7.4 is therefore equivalent to the following statement.

Theorem 7.6. Let φ be a holomorphic 1-form in a neighborhood U of S1. Then

lim
n→∞

(fm)n
∗φ =

1

2πi

(∫

S1

φ

)

dz

z

where the convergence is of order m and uniform on compact subsets of U .

Proof. Using the local coordinate z, write φ = φ(z)dz where φ(z) is analytic on
an annulus 1

R < |z| < R for some R > 1. The function φ(z) admits a Laurent
expansion

φ(z) =
∞
∑

k=−∞

akzk

and the coefficients ak satisfy

‖φ‖ :=

∞
∑

k=−∞

|ak|R|k| < ∞.

Since

a−1 =
1

2πi

∫

S1

φ(z)dz

it is required to show that

lim
n→∞

(fm)n
∗ φ = a−1

dz

z
.

In order to verify this, start with

(fm)∗φ =

m
∑

j=1

σ∗
j (φ(z)dz) =

∞
∑

k=−∞

m
∑

j=1

akσ∗
j (zkdz) =

∞
∑

k=−∞

ak(fm)∗(z
kdz)
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where σ1(w), ..., σm(w) are the m-th root sections of w = fm(z) = zm, defined by

σj(w) = e2πij/mσ0(w)

where σ0(w) = w1/m is the value of the complex m-th root whose argument is
between 0 and 2π/m. A direct calculation yields

(fm)∗(z
kdz) =

m
∑

j=1

σ∗
j (zkdz)

=

m
∑

j=1

e2πijk/mwk/m

(

1

m
e2πij/mw1/m−1

)

dw

=
1

m





m
∑

j=1

e2πij(k+1)/m



w(k+1−m)/mdw

=

{

z(k+1−m)/mdz if m|k + 1,
0 if m|k + 1.

This establishes the formula

(fm)∗φ =
∞
∑

k=−∞

am(k+1)−1z
kdz.

Consequently,
∥

∥

∥

∥

(fm)n
∗φ − a−1

dz

z

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∞
∑

k=−∞

amn(k+1)−1z
kdz − a−1

dz

z

∥

∥

∥

∥

∥

=

∞
∑

k=−∞,k 6=−1

|amn(k+1)−1|R|k|

=
∞
∑

k=−∞,k 6=−1

|amn(k+1)−1|R|mn(k+1)−1| R|k|

R|mn(k+1)−1|

≤ R

Rmn

∞
∑

k=−∞,k 6=−1

|amn(k+1)−1|R|mn(k+1)−1|

≤ R

Rmn

∥

∥

∥

∥

φ − a−1
dz

z

∥

∥

∥

∥

.

As n → ∞, this quantity converges to zero to order m. �

Corollary 7.4. For a rational function f
∫ ∞

−∞

f(x)dx = π lim
n→∞

Ln
m(f)(0)

provided that the integral is finite. In that case, convergence is of order m.

8. Implementation

In this section the implementation of the numerical scheme proposed in the
previous sections is discussed. Assume that A and B are polynomials and let

(8.1) I :=

∫ ∞

−∞

B(x)

A(x)
dx.
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The first issue under consideration is that the exact evaluation of the iterates of
Ln

m,p(B/A) usually leads to extreme growth in the size of the coefficients. Therefore,
while computing these iterates numerically, the coefficients are normalized after
each iteration by keeping the denominator polynomial with leading coefficient 1.

Example 8.1. This continues Example 2.6 where
∫ ∞

−∞

dx

x2 + 4x + 15
=

π√
11

is approximated using L2,2. The first iterate is 32
60x2+112x+240 . The next two Landen

iterates are
19200

57600x2 + 40320x + 77456
,

5186150400

17845862400x2 + 1601187840x+ 16614420736
.

Experiments show exponential growth in the coefficients.

Fix m ∈ N and let p = deg(A). The normalization proceeds as follows: let

(8.2) b0 = (b0,0, b0,1, . . . , b0,p−2) and a0 = (a0,0, a0,1, . . . , a0,p)

be the coefficients of the initial rational function B/A. For n ≥ 1, let

(8.3) (bn, an) =
1

a′
n,0

(b′n, a′
n), where (b′n, a′

n) = Lm,p(bn−1, an−1).

Recall that the rational Landen transformations preserve the degree of the denom-
inator. Hence, a′

n,0 6= 0 throughout. If the integral of B/A converges, then by
Corollary 7.4 its value is given by π limn→∞ bn,0.

Proposition 7.1 shows that, if the integral over B/A is finite, then an converges
to the coefficients ck of one of the p + 1 candidates

(x − i)k(x + i)p−k, 0 ≤ k ≤ p,

depending on the number k of roots of A with positive imaginary part. In particular,
Corollary 7.2 shows that if all coefficients are real, then an will converge to

(8.4)

((

p/2

0

)

, 0,

(

p/2

1

)

, 0, . . . ,

(

p/2

p/2 − 1

)

, 0,

(

p/2

p/2

))

.

Conversely, if convergence to one of the candidates in (8.4) is observed, then the
invariance of the integral under Lm shows that the initial integral must be finite.
Thus the algorithm also detects the integrability of rational functions.

After each step, the implementation checks if the approximate relative error
|(bn,0 − bn−1,0)/bn,0| is less than the precision goal. The distance of the coefficients
an to their limiting values is also monitored.

PseudoCode. The implementation of the Landen iteration method is given below
in pseudo code.

Input: the coefficients (b0, a0) of the rational function B/A, the order of the method
m ∈ N and a real parameter ǫ > 0.
Output: the approximation to the integral of B/A over the real line with (approx-
imate) relative error less than ǫ.

INPUT (b0, a0), ǫ
n := 0
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repeat
n := n + 1
(b′n, a′

n) := Lm,p(bn−1, an−1)
(bn, an) := 1

a′

n,0
(b′n, a′

n)

until |(bn,0 − bn−1,0)/bn,0| < ǫ and |(an,j − ck,j)/ck,j | < ǫ for all j and some
0 ≤ k ≤ p

OUTPUT πbn,0

The described method for integrating rational functions over the real line has
been implemented in Mathematica and can be downloaded from the website

http://www.math.tulane.edu/∼vhm
The Landen transformations can be either generated by the package, following the
description in Section 4, or downloaded as well. The following examples demon-
strate the basic usage of this package. Further examples can be obtained from the
above website.

Example 8.2. Given a rational function f , its integral over the entire real line can
be computed using the function NLandenIntegrate. For instance, to compute the
integral of 1/(x2 + 4x + 15) to a precision of 100 digits, input

NLandenIntegrate[1/(x^2+4x+15), PrecisionGoal->100]

> 0.94722582509948293642963438181697406661998807...

which indeed is correct to more than 190 digits. By default the Landen transfor-
mation is chosen to be of order 2 (see Remark 5.3 for why is this is desirable) but
higher orders m may be used by setting MethodOrder->m. Further options exist to
control the number of iterations and to obtain the intermediate Landen iterates.

Example 8.3. Before using the function NLandenIntegrate demonstrated in the
previous example the corresponding Landen transformation needs to be available.
The command

GenerateLandenTransforms[10]

will generate the Landen transformations of order 2 for degrees up to 10. Note
that on a modern desktop computer this will take less than half a second. After
execution, the Landen transformations are directly available as follows, compare
example 2.1:

LandenStep[{{b0}, {a0,a1,a2}}, 2]

> {{2a0b0+2a2b0}, {4a0a2, -2a0a1+2a1a2, a0^2-a1^2+2a0a2+a2^2}}

Again, higher orders than 2 can be generated using the option MethodOrder. Once
generated, these Landen transformations may be stored to a file. Alternatively,
pregenerated Landen transformations are available for download.

9. Conclusions

A numerical method for the integration of rational functions on the real line
has been described. The method has order of convergence prescribed by the user.
Its convergence and robustness have been analyzed. Examples illustrating speed
of convergence as well as the flexibility of this method have been provided. A
Mathematica package is available for the general public.
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Future work will attempt to couple this method with Pade approximations of the
integrand to produce a highly efficient numerical scheme for smooth integrable func-
tions. The construction of a numerical scheme for the finite interval case requires
the theory of Landen transformations on a half-line. This is an open question.
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