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Abstract

We study the action of the Hecke operators Un on the set of hypergeometric functions, as well as on
formal power series. We show that the spectrum of these operators on the set of hypergeometric functions
is the set {na

: n ∈ N, a ∈ Z}, and that the polylogarithms play an important role in the study of the
eigenfunctions of the Hecke operators Un on the set of hypergeometric functions. As a corollary of
our results on simultaneous eigenfunctions, we also obtain an apparently unrelated result regarding the
behavior of completely multiplicative hypergeometric coefficients.
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1. Introduction

For each n ∈ N, the space of formal power series F,

F :=

{
f (x)=

∞∑
k=0

ck xk
: ck ∈ C

}
, (1.1)

admits the action of the linear operators Un and Vn:

(Un f )(x) :=
∞∑

k=0

cnk xk (1.2)

and

(Vn f )(x) := f (xn)=

∞∑
k=0

ck xnk . (1.3)

The spectral properties of these operators become more interesting when one considers
their action on spaces with additional structure.
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Historically, Hecke studied the vector spaces of modular forms of a fixed weight
(see [2]), in which the set F is replaced by the space Mk of analytic functions in the
upper half-plane H := {τ : Im τ > 0} that satisfy the condition

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ ),

for every matrix in the modular group

0 :=

{(
a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
.

These forms are also required to have an expansion at τ = i∞, or equivalently a
Taylor series about q = 0:

f (τ )=
∞∑

n=0

c(n)qn,

expressed in terms of the parameter q = exp(2π iτ).
Hecke introduced a family of operators Tn , where n ∈ N, which map the space Mk

into itself. The standard definition is

(Tn f )(τ ) := nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nτ + bd

d2

)
,

which, in the special case where n is a prime p, becomes

(Tp f )(τ )= pk−1 f (pτ)+
1
p

p−1∑
b=0

f

(
τ + b

p

)
.

In terms of the Fourier expansion of f ∈Mk , given by

f (τ )=
∞∑

m=0

c(m)qm,

the action of Tn is

(Tn f )(τ )=
∞∑

m=0

γn(m)q
m,

where

γn(m)=
∑

d|(n,m)

dk−1c

(
mn

d2

)
.

In particular, when n is a prime p,

γp(m)=

{
c(pm)+ pk−1c(m/p) if p divides m,

c(pm) if p does not divide m.

History has shown that the study of Hecke operators is one of the most important
tools in modern number theory, yielding results about the uniform distributions of
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points, the eigenvalues of Laplacians on various domains, the asymptotic analysis of
Fourier coefficients of modular forms, and other branches of number theory.

Interesting results were obtained in the last decade when the space of modular
forms was replaced with the space of rational functions (see [4–6]). For example,
the spectral properties of the operator Un acting on rational functions were completely
characterized, and corollaries about completely multiplicative functions that satisfy
linear recurrence sequences were obtained (see [5]).

For the space R of rational functions, the coefficients an in (1.1) are the Taylor
coefficients of A/B ∈R, where B(x)= 1+ α1x + · · · + αd xd , and A is a polynomial
of degree less than d . The coefficients an are known to satisfy the recurrence relation

an+d =−α1an+d−1 − · · · − αdan

(see [7] for details). Thus the study of these coefficients employs the theory of linear
recurrence sequences and their explicit solutions. One of the main results in [5] is the
complete determination of the spectrum of Un acting on R, namely

spec(Un)= {±nk
: k ∈ N} ∪ {0}.

Recent work has produced a description of the corresponding rational eigenfunctions
(see [3, 6]).

In this paper, we consider the action of Un on the set H of hypergeometric functions:

H :=

{ ∞∑
k=0

ck xk
:

ck+1

ck
is a rational function of k

}
.

We emphasize here that H is a set rather than a vector space, because in general the sum
of two hypergeometric functions is not another hypergeometric function. Nevertheless,
this set includes many of the classical functions as well as all functions of the form

∞∑
k=0

R(k)xk,

where R is a rational function.
Every hypergeometric function that we consider has a canonical Taylor series

representation of the form

p Fq(a, b; x) :=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
,

where a := (a1, a2, . . . , ap) ∈ Cp and b := (b1, b2, . . . , bq) ∈ Cq are the parameters
of p Fq . These parameters satisfy −bi 6∈ N. Here we use the standard notation for the
ascending factorial

(c)k := c(c + 1)(c + 2) · · · (c + k − 1),

and (c)0 := 1. For example, (1)k = k!, and (0)k = 0.
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Hypergeometric functions include

f (x)=
∞∑

k=0

xk

k2 + 1
,

as well as most of the elementary functions. For example, the hypergeometric
representation of the exponential function is given by ex

= 1 F1(a, a; x) for any
nonzero a ∈ C. Similarly, the error function

erf(x)=
2
√
π

∫ x

0
e−t2

dt,

can also be represented as a hypergeometric function, namely

erf(x)=
2x
√
π

1 F1

(
1
2
,

3
2
; x

)
.

For a more complete discussion of hypergeometric functions, see [1].
In Section 5 we describe the action of the Hecke operator Un on hypergeometric

functions. To state the results, define

F
j
(p,q) := {x

j
p Fq(a, b; x) : a ∈ Cp, b ∈ Cq

},

for fixed j ∈ N and p, q ∈ N. This is the set of all hypergeometric functions that vanish
to order j at the origin, and have hypergeometric coefficients

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k
,

with p ascending factorials in the numerator and q ascending factorials in the
denominator. Observe that

H := {x j
p Fq(a, b; x) : j, p, q ∈ N, a ∈ Cp, b ∈ Cq

} =

⋃
j,p,q∈N

F
j
(p,q).

We establish first the identities

Un(x
j

p Fq(a, b; x))= x j/n
∞∑

k=0

nnk(p−q−1) (c1)k(c2)k · · · (cnp)k

(d1)k(d2)k · · · (dn(q+1)−1)k

xk

k!

in F
j
(p1,q1)

, when n divides j , and

Un(x
j

p Fq(a, b; x))= x1+b j/nc
∞∑

k=0

nnk(p−q−1) (c1)k · · · (cpn)k

(d1)k · · · (d(q+1)n−1)k

xk

k!

in F
j
(p1,q1)

, if n does not divide j . Here p1 = np and q1 = n(q + 1)− 1, while the
new parameters c and d are given in (5.1) and (5.2). In particular, we observe in
Section 5 that Un maps F

j
(p,q) into itself if and only if p = q + 1. These are the

balanced hypergeometric functions. Therefore, an eigenfunction of Un must satisfy
the condition p = q + 1.
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The eigenfunctions of Un on the space of formal power series are described in
Section 4. We consider solutions of Un f = λ f , where f (x)= x j ∑∞

k=0 ak xk , and
show that if n divides j , then it follows that j = 0, λ= 1 and the eigenfunction f must
reduce to the rational function 1/(1− x). On the other hand, in the case where n does
not divide j , we show that j must be 1 and the eigenvalue λ must be of the form na ,
where a ∈ Z.

One of the main results here is the complete characterization of the spectrum
spec(Un) of Un on hypergeometric functions, yielding the result that

spec(Un)= {n
k
: k ∈ Z} ∪ {0}.

As a corollary, we obtain a number-theoretic characterization of all completely
multiplicative functions that are also hypergeometric ratios of ascending factorials.

An ultimate goal is to determine the spectrum of all linear combinations of
hypergeometric series, but this seems far from the reach of current technology. Thus
we focus first on the action of the Hecke operators on a single hypergeometric series.

2. A natural inner product on H

The set H of all hypergeometric functions can be endowed with a natural inner
product:

〈 f, g〉R :=
∮
|z|=R

f (w)g(w)
dw

w
.

We fix a real number R such that 0< R < 1, so that this inner product is now a function
of R; as we shall see shortly, it is in fact a real analytic function of R. Moreover, we
shall also see below that Vn is the natural conjugate linear operator to Un with respect
to this inner product. This fact is our motivation for introducing the linear operator Vn .

The next result describes this inner product in terms of the Taylor series expansions
of f and g.

LEMMA 2.1. If f (z)=
∑
∞

n=0 cnzn and g(z)=
∑
∞

n=0 dnzn , then

〈 f, g〉R = 2π i
∞∑

n=0

cndn R2n.

PROOF. By definition,

〈 f, g〉R =
∮
|w|=R

∞∑
n=0

cnw
n
×

∞∑
m=0

dmw
m dw

w

=

∮
|w|=R

∞∑
n,m=0

cndmw
n−m−1 R2m dw,

because w = R2/w on the circle of integration. Cauchy’s integral formula shows that
n = m, for otherwise the ensuing line integral is zero. This condition gives us the
desired result. 2
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This inner product makes sense even for formal power series, although we restrict
our attention to the set H of hypergeometric functions. On H, the inner product of
any two hypergeometric functions is in fact a hypergeometric function of R, as is
easily seen by noting that the product of two hypergeometric coefficients is another
hypergeometric coefficient.

To further develop the algebra of the operators Un and Vn , we now show that Vn is
the natural conjugate linear operator for Un , relative to the inner product introduced
above.

LEMMA 2.2. Let f, g ∈H. Then

〈Un f, g〉R = 〈 f, Vng〉Rn .

PROOF. On the one hand,

〈Un f, g〉R =

〈 ∞∑
k=0

cknzk,

∞∑
k=0

dk zk
〉

R

=

∞∑
k=0

cnkdk R2k .

On the other hand,

〈 f, Vng〉R =

〈 ∞∑
k=0

ck zk,

∞∑
k=0

dk zkn
〉

R

=

∞∑
k=0

ckhk R2k,

where we define

hk =

{
0 if n does not divide k,

dk/n if n divides k.

It follows that

〈 f, Vng〉R =
∞∑

k=0

ckndk(R
n)2k
= 〈Un f, g〉Rn ,

as required. 2

Recall that Hadamard introduced an inner product in the space F of formal power
series:

( f ∗ g)(x) :=
∞∑

k=0

ckdk xk .

This product can be retrieved as a special case of 〈·, ·〉R ; namely,〈 ∞∑
k=0

ck xk,

∞∑
k=0

dk xk

〉
R1/2
=

∞∑
k=0

ckdk Rk .

Thus the Hadamard product is completely equivalent to our inner product.
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3. Elementary properties of the operators Un and Vn

In this section we describe elementary properties of the operators defined in (1.2)
and (1.3).

THEOREM 3.1. Let m, n ∈ N. Then the following hold.

(a) Un ◦Um =Um ◦Un =Unm .
(b) Vn ◦ Vm = Vm ◦ Vn = Vnm .
(c) Un ◦ Vn = Id.
(d) Un ◦ Vm = Vm/gcd(m,n) ◦Un/gcd(m,n). In particular, if m and n are relatively

prime, then Un and Vm commute.

PROOF. Let f ∈ F be a formal power series with coefficients ck . The first two
properties follow directly from the observation that

UnUm f (x)=Un

∞∑
k=0

cmk xk
=

∞∑
k=0

cnmk xk
=Unm f (x),

and similarly for VnVm . To establish the third property observe that

UnVn f (x) = UnVn

( ∞∑
k=0

ck xk
)
=Un

( ∞∑
k=0

ck xkn
)

=

∞∑
k=0

ck xk
= f (x).

Finally,

Un ◦ Vm

( ∞∑
k=0

ck xk
)
=Un

( ∞∑
k=0

ck xmk
)
.

To simplify this, let

dk =

{
ck/m if m divides k,

0 if m does not divide k,

and write

Un ◦ Vm

( ∞∑
k=0

ck xk
)
=Un

( ∞∑
k=0

dk xk
)
=

∞∑
k=0

dnk xk .

Now observe that m divides kn if and only if m/gcd(m, n) divides k. Therefore, we
define

N =
n

gcd(m, n)
and M =

m

gcd(m, n)
,

and we obtain the following sum on k:∑
k

dnk xk
=

∑
m|nk

dnk xk
=

∑
m|nk

cnk/m xk

=

∑
M |Nk

c(Nk)/M xk
=

∑
M |k

cN (k/M)x
k,
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where each sum is defined for k from 0 to∞, and subject to the constraints given. We
now let k = i M , and sum over i ≥ 0, and see that∑

M |k

cN (k/M)x
k
=

∞∑
i=0

ci N x i M .

Now define hi = ci N , and obtain

∞∑
i=0

hi x
i M
= VM

( ∞∑
i=0

hi x
i
)
= VM

( ∞∑
i=0

ci N x i
)
= VM ◦UN

( ∞∑
i=0

ci x
i
)
,

and we have established part (d). 2

We now present an alternate proof for Theorem 3.1. To do this, we must prove an
intermediate result.

LEMMA 3.2 (Associativity of U and V ). For all k, j, m ∈ N,

Uk j ◦ Vm =Uk ◦ (U j ◦ Vm).

PROOF. Let f (z)=
∑
∞

n=0 anzn . For this proof, we will evaluate both operators and
show they give the same result. First, for Uk j ◦ Vm ,

(Uk j ◦ Vm) f (z)=Uk j f (zm)=Uk j

( ∞∑
n=0

anzmn
)
.

Now we let

bi =

{
ai/m if m divides i,

0 otherwise,

so that we can write

Uk j

( ∞∑
n=0

anzmn
)
=Uk j

( ∞∑
i=0

bi z
i
)
=

∞∑
i=0

b(k j)i z
i .

Next, for Uk ◦ (U j ◦ Vm),

Uk ◦ (U j ◦ Vm)

( ∞∑
n=0

anzn
)
=Uk

(
U j

( ∞∑
n=0

anzmn
))
=Uk

( ∞∑
i=0

ci z
i
)
,

where

ci =

{
an if i j = mn for n ∈ N ∪ {0},
0 otherwise.

Then

Uk

( ∞∑
i=0

ci z
i
)
=

∞∑
i=0

cki z
i .

We complete the proof by noting that b(k j)i = cki . 2
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ALTERNATIVE PROOF OF THEOREM 3.1(d). We can write

Un ◦ Vm = (Un/gcd(m,n) ◦Ugcd(m,n)) ◦ (Vgcd(m,n) ◦ Vm/gcd(m,n)),

by parts (a) and (b) of the theorem. Now, using associativity, we can write

Un ◦ Vm =Un/gcd(m,n) ◦ (Ugcd(m,n) ◦ Vgcd(m,n)) ◦ Vm/gcd(m,n).

By part (c) of the theorem, we see that Ugcd(m,n) ◦ Vgcd(m,n) = I , and we are left with
Un ◦ Vm =Um/gcd(m,n) ◦ Vgcd(m,n). Thus, part (d) of the theorem is proven. 2

4. The action of Un on formal power series

We now determine an expression for the action of the operator Un on formal power
series where we allow the first few coefficients to vanish. This result will be employed
in our study of spectral properties of Un acting on hypergeometric functions. For the
rest of this section, all functions are assumed to be formal power series.

THEOREM 4.1. Let j, n ∈ N. Then

Un

(
x j
∞∑

k=0

ak xk
)
=


x1+b j/nc

∞∑
k=0

an(k+1−{ j/n})x
k if n does not divide j,

x j/n
∞∑

k=0

aknxk if n divides j .

PROOF. First observe that

Un

(
x j
∞∑

k=0

ak xk
)
=Un

( ∞∑
k=0

ak xk+ j
)
=Un

( ∞∑
k= j

ak− j xk
)
,

and define

bk =

{
0 if 0≤ k < j,

ak− j if k ≥ j;
(4.1)

then we can write

Un

(
x j
∞∑

k=0

ak xk
)
=Un

( ∞∑
k=0

bk xk
)
=

∞∑
k=0

bknxk .

The discussion is divided into two cases, according to whether n divides j or not.

Case 1: n does not divide j . In this case, the restriction kn ≥ j in (4.1) is
equivalent to k ≥ b j/nc + 1. Thus,

∞∑
k=0

bknxk
=

b j/nc∑
k=0

bknxk
+

∞∑
k=b j/nc+1

bknxk

=

∞∑
k=b j/nc+1

akn− j xk .
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Now let i = k − b j/nc − 1, to obtain
∞∑

k=0

bknxk
= xb j/nc+1

∞∑
i=0

ani+nb j/nc+n− j x i .

Now use the formula j/n = b j/nc + { j/n} to obtain

Un

(
x j
∞∑

k=0

ak xk
)
= xb j/nc+1

∞∑
i=0

an(i+1−{ j/n})x
i .

This is the result when n does not divide j .

Case 2: n divides j . In this case, the condition kn ≥ j is equivalent to k ≥ j/n =
b j/nc, and

∞∑
k=0

bknxk
=

∞∑
k=b j/nc

bknxk

=

∞∑
k=b j/nc

akn− j xk

= xb j/nc
∞∑

i=0

ani x
i ,

so that

Un

(
x j
∞∑

k=0

ak xk
)
= xb j/nc

∑
ν≥0

anνxν .

This concludes the proof. 2

The expressions for Un are now used to derive some elementary properties of its
eigenfunctions on the space of formal power series.

PROPOSITION 4.2. Assume that Un has an eigenfunction of the form

f (x)= x j
∞∑

k=0

ak xk,

with eigenvalue λ. If n divides j , then j = 0 and λ= 1. If n does not divide j , then
j = 1.

PROOF. Assume that n divides j and match the leading order terms of f and Un f .
Theorem 4.1 shows that x j

= x j/n , which yields j = 0. Now compare the constant
terms in the eigenvalue equations to see that λ= 1. In the case where n does not
divide j , the same comparison yields

j = 1+ b j/nc.

This implies that j = 1. Indeed, let j = αn + β where 0< β < n. Then j = 1+ α,
and this yields

1− β = α(n − 1). (4.2)
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It follows that β = 1 and α = 0, otherwise the two sides of (4.2) have different signs.
We conclude that j = 1+ α = 1. 2

Hence even for a formal power series f , we see that the assumption that f is an
eigenfunction of the Hecke operator Un imposes the restriction that f can only vanish
to order zero or one.

For the sake of completeness, we describe the trivial eigenfunctions of the
composition of operators Un ◦ Vn and Vn ◦Un . Theorem 3.1 shows that Un ◦ Vn is
the identity. The next result describes the composition Vn ◦Un .

THEOREM 4.3. The only eigenvalue of Vn ◦Un is 1. Moreover, given any formal
power series f (x)=

∑
∞

k=0 bk xk , the function g(x)=
∑
∞

k=0 ak xk , where

ak =

{
bk if n divides k,

0 if n does not divide k,

is an eigenfunction of Vn ◦Un , with eigenvalue 1.

PROOF. We consider the identity

(Vn ◦Un)

( ∞∑
k=0

ak xk
)
=

∞∑
k=0

aknxk,

and we are done. 2

5. The hypergeometric functions

In this section we use Theorem 4.1 to describe the action of Un on the set H of all
hypergeometric functions. We recall that a hypergeometric function is defined by the
power series

p Fq(a, b; x) :=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
,

where a := (a1, a2, . . . , ap) and b := (b1, b2, . . . , bq) are the parameters of p Fq .
These parameters are nonzero complex numbers. We begin by stating explicitly the
action of Un on F

j
(p,q) as the main result of this section.

THEOREM 5.1. Let j, n ∈ N. The action of Un on the class F
j
(p,q), that is, on functions

of the form
f p,q, j = x j

p Fq(a, b; x),

is characterized as follows.
If n divides j , then

Un

(
x j
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk
)
= x j/n

∞∑
k=0

(c1)k(c2)k · · · (cnp)k

(d1)k(d2)k · · · (dn(q+1)−1)k

xk
1

k!
,
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where the parameters c and d are defined by

cin+l =
ai+1 + l − 1

n
if 0≤ i ≤ p − 1, 1≤ l ≤ n,

din+l =
bi+1 + l − 1

n
if 0≤ i ≤ q, 1≤ l ≤ n,

(5.1)

and j1 = j/n. The new variable is x1 = nn(p−q−1)x.
If n does not divide j , then

Un

(
x j
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk
)
= x1+b j/nc

∞∑
k=0

(c1)k · · · (cpn)k

(d1)k · · · (d(q+1)n−1)k

xk
1

k!
,

where the parameters c and d are now defined by

cin+l =
ai+1 + r + l

n
if 0≤ i ≤ p − 1, 1≤ l ≤ n,

din+l =
bi+1 + r + l

n
if 0≤ i ≤ q, 1≤ l ≤ n,

(5.2)

and j2 = 1+ b j/nc and r = n(1− { j/n})− 1. The new variable x1 is defined as
above.

Before proving this theorem, we first need to state some intermediate results. The
next lemma allows for a simplification of the ascending factorial function on an
arithmetic progression of indices.

LEMMA 5.2. Let k, n ∈ N and a ∈ R. Then

(a)kn = nkn
n−1∏
j=0

(
a + j

n

)
k
.

PROOF. Start with the observation that

(a)kn =

kn−1∏
i=0

(a + i)= nkn
kn−1∏
i=0

(
a

n
+

i

n

)
,

and then collect terms according to their classes modulo n. 2

In order to evaluate

Un(x
j

p Fq(a, b))=Un

(
x j
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k(bq+1)k
xk
)
,

where we used the fact that k! = (1)k and defined bq+1 = 1, we observe that, by
Theorem 4.1, the discussion should be divided into two cases according to whether
or not n divides j .
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Case 1: n divides j . In this case, Theorem 4.1 yields

Un(x
j

p Fq(a, b))= x j/n
∞∑

k=0

(a1)kn · · · (ap)kn

(b1)kn · · · (bq+1)kn
xk,

and using Lemma 5.2 we can write this as

Un(x
j

p Fq(a, b)) = x j/n
∞∑

k=0

n(p−q−1)kn
( p∏

j=1

n−1∏
i=0

(
a j + i

n

)
k

)

×

( q+1∏
j=1

n−1∏
i=0

(
b j + i

n

)
k

)−1

xk .

Now recall that bq+1 = 1, so the d-parameters when i = q from the definition (5.2)
are 1/n, 2/n, . . . , (n − 1)/n, 1. The total number of d-parameters is now reduced
by 1, in order to write the result in the canonical hypergeometric form:

Un(x
j

p Fq(a, b))= x j/n
∞∑

k=0

n(p−q−1)kn (c1)k(c2)k · · · (cnp)k

(d1)k(d2)k · · · (dn(q+1)−1)k

xk

k!
.

LEMMA 5.3. The parameters a, b, c and d satisfy

np∑
i=1

ci −

n(q+1)−1∑
i=1

di =

p∑
i=1

ai −

q∑
i=1

bi +
(n − 1)

2
(p − q − 1).

PROOF. The new parameters are

a1

n
,

a1 + 1
n

, . . . ,
a1 + n − 1

n
,

ap

n
, . . . ,

ap + n − 1

n

and

b1

n
,

b1 + 1
n

, . . . ,
b1 + n − 1

n
,

bq+1

n
=

1
n
, . . . ,

bq+1 + n − 2

n
=

n − 1
n

,

and the identity is now easy to check. 2

COROLLARY 5.4. If p = q + 1, then
∑p

i=1 ai −
∑q

i=1 bi is preserved under the
action of Un .

Case 2: n does not divide j . In this case, Theorem 4.1 gives

Un

(
x j
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk
)
= x1+b j/nc

∞∑
k=0

(a1)N · · · (ap)N

(b1)N · · · (bq+1)N
xk,

where bq+1 = 1 and we define N = n(k + 1− { j/n}). Observe that 0< { j/n}< 1,
and thus nk < N < n(k + 1). The next result simplifies the Pochhammer symbols.
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LEMMA 5.5. Let a ∈ C and j, n ∈ N where j is not divisible by n. Define N =
n(k + 1− { j/n}) and r = n(1− { j/n})− 1. Then

(a)N = nnk(a)r+1

r+n∏
i=r+1

(
a + i

n

)
k
.

PROOF. We begin by recalling that

(a)N = a(a + 1)(a + 2) · · · (a + N − 1)

= nN
[

a

n

(
a

n
+

1
n

)
· · ·

(
a

n
+

N − 1
n

)]
.

We now regroup terms modulo n as follows:

n−N (a)N =

(
a

n

)
·

(
a

n
+ 1

)
· · ·

(
a

n
+ k − 1

)
×

(
a

n
+

1
n

)
·

(
a

n
+

1
n
+ 1

)
· · ·

(
a

n
+

1
n
+ k − 1

)
· · ·

×

(
a

n
+

n − 1
n

)
·

(
a

n
+

n − 1
n
+ 1

)
· · ·

(
a

n
+

n − 1
n
+ k − 1

)
×

{(
a

n
+ k

)
·

(
a

n
+

1
n
+ k

)
· · ·

(
a

n
+

r

n
+ k

)}
.

The last factor appears because n does not divide j . Therefore

(a)N = nN
n−1∏
i=0

(
a + i

n

)
k
×

r∏
i=0

(
a + i

n
+ k

)
,

where the second product does not involve the Pochhammer symbol. Now employ the
relation

k + c = c
(c + 1)k
(c)k

,

to write

(a)N = nN
n−1∏
i=0

(
a + i

n

)
k

r∏
i=0

(
a + i

n

)
·

r∏
i=0

(
a + i

n
+ 1

)
k

/ r∏
i=0

(
a + i

n

)
k
.

This expression reduces to the stated formula. 2

The transformation above yields

Un

(
x j
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk
)
= x1+b j/nc

∞∑
k=0

nnk(p−q−1) (c1)k · · · (cpn)k

(d1)k · · · (d(q+1)n)k
xk .

The special case where p = q + 1 provides a simpler situation, in which the
coefficient nnk(p−q−1) does not appear in the resulting series.
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THEOREM 5.6. Let j, n ∈ N and assume that p = q + 1.
If n divides j , then

Un(x
j

p Fq(a, b; x))= x j/n
np Fnp−1(c, d; x),

where c and d are defined in (5.1).
If n does not divide j , then

Un(x
j

p Fq(a, b; x))= x1+b j/nc
np Fnp−1(c, d; x),

where c and d are defined in (5.2).

6. The eigenvalue equation

In this section we focus on the spectral properties of the operator Un , as the spectral
properties of the operators Vn are trivial. It is here that we encounter more subtle ideas.
We describe first the eigenfunctions of the operator Un of the form x j

p Fq(a, b; x).
That is, we look for parameters p, q ∈ N and complex numbers

a1, a2, . . . , ap; b1, b2, . . . , bq

such that, with a= (a1, . . . , ap) and b= (b1, . . . , bq),

Un(x
j

p Fq(a, b; x))= λx j
p Fq(a, b; x). (6.1)

The results from Theorem 5.1 showed that the action of Un on x j
p Fq depends on

whether or not n divides j , which by Proposition 4.2 reduces to the cases in which
j = 0 and j = 1 when considering eigenfunctions of Un .

Case 1: j = 0. Under this condition, we show that the eigenfunction reduces to a
rational function.

LEMMA 6.1. Assume that n divides j and that (6.1) has a nontrivial solution. Then,
for all k ∈ N,

p∏
j=1

n−1∏
i=0

(a j + nk + i)×
q+1∏
j=1

(b j + k)

=

p∏
j=1

(a j + j)×
q+1∏
j=1

n−1∏
i=0

(b j + nk + i).

PROOF. Comparing terms of the equation Un f = f yields

(a1)nk(a2)nk · · · (ap)nk

(b1)nk(b2)nk · · · (bq+1)nk
=

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq+1)k
. (6.2)

Replace k by k + 1, divide the two equations and use the formulae

(a)k+1

(a)k
= a + k and

(a)n(k+1)

(a)k
= (a + nk)(a + nk + 1) · · · (a + nk + n − 1)

to produce the result. 2
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LEMMA 6.2. Assume that n divides j and that (6.1) has a nontrivial solution. Then
p = q + 1.

PROOF. Comparing the degrees of the left- and right-hand side of (6.2) gives the
equality pn + q + 1= p + n(q + 1). 2

PROPOSITION 6.3. Assume that n divides j and that (6.1) has a nontrivial solution.
Then{

ai ,
bi

n
,

bi + 1
n

, . . . ,
bi + n − 1

n

}p

i=1
=

{
bi ,

ai

n
,

ai + 1
n

, . . . ,
ai + n − 1

n

}p

i=1
.

PROOF. The roots of the left- and right-hand side of (6.2) must match. 2

We now show that the results of this proposition imply that the parameters must
match: ai = bi for all indices.

PROPOSITION 6.4. Assume that n divides j and that (6.1) has a nontrivial solution.
Then, for any k ∈ N,

p∑
i=1

ak
i =

p∑
i=1

bk
i .

PROOF. Proof is by induction on k. The case where k = 1 comes from matching the
coefficients of the next to leading order in k. Indeed, this matching yields

p∑
i=1

ai +

n−1∑
j=1

p∑
i=1

(bi + j)=
p∑

i=1

bi +

n−1∑
j=1

p∑
i=1

(ai + j),

and the case where k = 1 holds. In order to check it for k = 2, add the squares of the
elements in Proposition 6.3 to obtain, from the left-hand side, the expression

p∑
i=1

a2
i +

1

n2

p∑
i=1

n−1∑
j=0

(b2
i + 2 jbi + j2)

=

p∑
i=1

a2
i +

1
n

p∑
i=1

b2
i +

2

n2

p∑
i=1

bi ×

n−1∑
j=0

j +
p

n2

n−1∑
j=0

j2.

Matching with the corresponding expression from the right-hand side and using the
statement for k = 1 yields

p∑
i=1

a2
i =

p∑
i=1

b2
i .

The higher moments can be established along these lines. 2
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PROPOSITION 6.5. Assume that two sets {a j : 1≤ j ≤ p} and {b j : 1≤ j ≤ p} of
complex numbers satisfy

p∑
i=1

ak
i =

p∑
i=1

bk
i ,

for every k ∈ N. Then, after a possible rearrangement of the order of the terms of one
of these sets, ai = bi for all i .

PROOF. For a, b ∈ Cp and N ∈ N, let

µN (a)=
p∑

i=1

aN
i

and let

fa(t)=
∞∑
j=0

µ j (a)
t j

j !
and fb(t)=

∞∑
j=0

µ j (b)
t j

j !

be the generating functions of µN (a) and µN (b), respectively. Now assume that
fa = fb, that is,

∞∑
j=0

µ j (a)
t j

j !
=

∞∑
j=0

µ j (b)
t j

j !
.

Expanding further gives

∞∑
j=0

p∑
i=1

a j
i

t j

j !
=

∞∑
j=0

p∑
i=1

b j
i

t j

j !
.

Since µ j is defined as a sum of finite terms, we can change the order of summation:

p∑
i=1

∞∑
j=0

a j
i

t j

j !
=

p∑
i=1

∞∑
j=0

b j
i

t j

j !
.

This yields
ea1t
+ ea2t

+ · · · + eap t
= eb1t

+ eb2t
+ · · · + ebp t . (6.3)

Suppose first that ai , bi ∈ R and order them as

a1 ≤ a2 ≤ · · · ≤ ap and b1 ≤ b2 ≤ · · · ≤ bp.

Eliminate from (6.3) all the terms for which the as and bs match, to assume that
a1 < b1. Then

1+ e(a2−a1)t + · · · + e(ap−a1)t = e(b1−a1)t + e(b2−a1)t + · · · + e(bp−a1)t .

Finally, let t→−∞ to get a contradiction. 2
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We summarize the previous discussion in the following theorem.

THEOREM 6.6. Suppose there exists an eigenfunction of Un of the form

f (x)=
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq+1)k
xk,

corresponding to the eigenvalue λ (this is the case where j = 0 in (6.1)). Then
λ= 1, p = q + 1 and ai = bi for all i . Therefore f (x)= 1/(1− x).

Proposition 4.2 shows that the only possible values for j are 0 and 1. The rest of
the section treats the case where j = 1.

Case 2: j = 1. Under this condition we show that the spectrum of the operator
Un is the set {ni

: i ∈ Z}. The corresponding eigenfunctions are the polylogarithm
functions

PolyLogi (x) :=
∞∑

k=1

ki xk,

corresponding to the eigenvalue ni when i is negative, and the eigenfunctions(
x

d

dx

)i( 1
1− x

)
,

corresponding to the eigenvalue ni when i is nonnegative.

EXAMPLE 6.7. The dilogarithm function

Li2(x) :=
∞∑

k=1

xk

k2

satisfies

Un(Li2(x))=
1

n2 Li2(x).

Therefore 1/n2
∈ Spec(Un). The dilogarithm function admits the hypergeometric

representation
Li2(x)= x3 F2(13, 22; x),

where 13 stands for (1, 1, 1) and 22 stands for (2, 2).

We now explore properties of eigenfunctions of the operator Un .

PROPOSITION 6.8. Assume that (6.1) has a nontrivial solution for which j = 1. Then,
for all k ∈ N,

p∏
j=1

(a j + k − 1) ·
q+1∏
j=1

n−2∏
i=−1

(b j + nk + i)=
q+1∏
j=1

(b j + k − 1) ·
p∏

j=1

n−2∏
i=−1

(a j + nk + i).
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PROOF. Assume that the eigenfunction has the form

f (x)= x
∞∑

k=0

ck xk .

Comparing coefficients in the equation Un f = λ f gives

cnk−1 = λck−1.

Replacing the standard hypergeometric type yields

(a1)nk−1 · · · (ap)nk−1

(b1)nk−1 · · · (bq+1)nk−1
= λ

(a1)k−1 · · · (ap)k−1

(b1)k−1 · · · (bq+1)k−1
. (6.4)

Replace k by k + 1 and divide the two corresponding equations to obtain the result. 2

LEMMA 6.9. Assume that j = 1 and that (6.1) has a nontrivial solution of the form

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk .

Then p = q + 1.

PROOF. Compare the degrees on both sides of the polynomial in Proposition 6.8. 2

PROPOSITION 6.10. Assume that

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bp)k
xk

is an eigenfunction for Un . Then
p⋃

i=1

{
ai − 1,

bi − 1
n

,
bi

n
, . . . ,

bi + n − 2
n

}

=

p⋃
i=1

{
bi − 1,

ai − 1
n

,
ai

n
, . . . ,

ai + n − 2
n

}
.

PROOF. These are the roots of both sides of the polynomial in Proposition 6.8. 2

We now show that this equality of sets imposes severe restrictions on the
eigenvalues and eigenfunctions of the operator Un . We discuss first the eigenvalues.

PROPOSITION 6.11. Assume that

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bp)k
xk

is an eigenfunction for Un . Let

γa := |{i ∈ {1, 2, . . . , p} : ai = 1}|,

and
γb := |{i ∈ {1, 2, . . . , p} : bi = 1}|.
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Then

nγa (a1)n−1(a2)n−1 · · · (ap)n−1 = nγb(b1)n−1(b2)n−1 · · · (bp)n−1. (6.5)

PROOF. Consider the product of all the nonzero terms on the left-hand side of
Proposition 6.10. The removal of the zero terms, corresponding to those ai equal
to 1, carries with it the removal of a power of n. 2

EXAMPLE 6.12. In Example 6.7 we see that γa = 3 and γb = 1. Thus (6.5) states
correctly that

n3
× (1)n−1(1)n−1(1)n−1 = n × (2)n−1(2)n−1(1)n−1.

THEOREM 6.13. Assume that j = 1 and

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bp)k

is an eigenfunction for Un with eigenvalue λ. Then

λ= nγb−γa ,

where γa and γb are defined in (6.5).

PROOF. Put k = 1 in the relation (6.4) to obtain

λ=
(a1)n−1 · · · (ap)n−1

(b1)n−1 · · · (bq+1)n−1
.

Now use (6.5) to conclude. 2

The result above shows that the spectrum of Un satisfies

Spec(Un)⊆ {n
a
: a ∈ Z}.

The example below shows that actually equality holds.

EXAMPLE 6.14. Let i ∈ Z. Then the hypergeometric series

fi (x) :=
∞∑

k=1

ki xk,

is an eigenfunction of Un , with eigenvalue ni . The dilogarithm corresponds to the case
where i =−2.

THEOREM 6.15. The spectrum of Un is the set {ni
: i ∈ Z}.

We now discuss the eigenfunctions of Un , starting with the sets
p⋃

i=1

{
ai − 1,

bi − 1
n

,
bi

n
, . . . ,

bi + n − 2
n

}

=

p⋃
i=1

{
bi − 1,

ai − 1
n

,
ai

n
, . . . ,

ai + n − 2
n

}
,
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that appeared in Proposition 6.10. Recall that {ai , bi } are the parameters of the
eigenfunction

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk .

We may assume that ai 6= b j , otherwise we just cancel the equal terms (ai )k and (b j )k .
Observe that if we let ci = ai − 1 and di = bi − 1, the basic set identity in Case 2 of
Proposition 6.10 becomes the basic set identity of Case 1, with ci instead of ai and
di instead of bi . The reason why one cannot deduce ai = bi is that some of the ai in
Case 2 might be 1, and the corresponding ci would vanish. This would violate the
basic assumption of Proposition 6.5.

We bypass this difficulty by defining

a′i =

{
ai if ai 6= 1,

2 if ai = 1,

and

b′i =

{
bi if bi 6= 1,

2 if bi = 1.

The sets described above, obtained by replacing ai and bi by a′i and b′i , remain equal.
In order to see this, observe that if a1 = 1, then the elements containing a1 are{

a1 − 1
n

,
a1

n
, . . . ,

a1 + n − 2
n

}
;

these are replaced by {
a1

n
,

a1 + 1
n

, . . . ,
a1 + n − 1

n

}
,

which amounts to simply replacing a1 by a1 + 1. Theorem 6.6 shows that a′i = b′i .
Whether ai and bi are both equal to 1 or both different from 1, we still conclude
that ai = bi . This contradicts our original assumption. In the case where a′i = b′i and
ai = 1, we conclude that bi = 2. Similarly, if a′i = b′i and bi = 1, then we obtain
ai = 2. Therefore, any instance where ai = 1 produces the valid pair {1, 2}, and
any instance where bi = 1 leads to {2, 1}. Using the fact that there are no common
parameters in the numerator and denominator, we conclude that an eigenfunction must
have the following structure.

THEOREM 6.16. Assume that

f (x)= x
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq+1)k
xk

is an eigenfunction of Un , with the usual normalization bq+1 = 1. Then, either ai = 2
and bi = 1 whenever 1≤ i ≤ p, or ai = 1 and bi = 2 whenever 1≤ i ≤ p.
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In other words, if f is an eigenfunction of any particular Hecke operator Un , then

f (x)= a Fa−1(1a, 2a−1; x)=
∞∑

k=0

1
ka xk,

or

f (x)= a Fa−1(2a, 1a−1; x)=
∞∑

k=0

ka xk,

where a ∈ N and 1a stands for the a-vector (1, 1, . . . , 1) and 2b is defined
analogously.

7. The simultaneous eigenfunctions of Un for all n

In this section we completely characterize those hypergeometric functions that are
simultaneous eigenfunctions of Un for all n, and give an application to the theory of
completely multiplicative functions.

What do the hypergeometric functions f (x)=
∑
∞

k=1 ck xk that are simultaneous
eigenfunctions of all of the linear operators Un look like? It turns out that there
is a simple answer: they are precisely the polylogarithms and the rational functions
(xd/dx)a(1/(1− x)), as given by the following theorem.

THEOREM 7.1. Let

f (x)=
∞∑

k=1

ck xk

be a hypergeometric function with no constant term. Then f is a simultaneous
eigenfunction for the set of all Hecke operators {Un}

∞

n=1 if and only if

f (x)= C
∞∑

k=1

ka xk,

where a ∈ Z and C ∈ C. In other words, either f is a polylogarithm, or
f (x)= (xd/dx)a(1/(1− x)).

Before proving this theorem, we prove an interesting corollary regarding a
number-theoretic fact concerning hypergeometric coefficients that are completely
multiplicative functions of the summation index.

COROLLARY 7.2. The hypergeometric coefficient

c(n)=
(a1)n−1 · · · (ap)n−1

(b1)n−1 · · · (bq)n−1
,

is a completely multiplicative function of n if and only if it is of the form Cna for some
a ∈ Z and C ∈ C.

PROOF. By the definition of completely multiplicative functions, we know that

c(nk)= c(n)c(k)
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for all k, n ∈ N. This implies that

f (x)=
∞∑

k=1

c(k)xk

is an eigenfunction of Un , with eigenvalue c(n). This holds for all n, thus it is a
simultaneous eigenfunction. The result now follows from Theorem 7.1. 2

We recall that by definition f is a simultaneous eigenfunction of all of the Hecke
operators if and only if, for all n ∈ N,

Un f = λn f.

Treating f as a power series without even considering its hypergeometric properties,
we see that

∞∑
k=1

cnk xk
= λn

∞∑
k=1

ck xk,

so that
cnk = λnck .

This is true for all k ≥ 1, so we can set k = 1, which shows that

cn = λnc1.

This, in turn, is true for all n, and proves the following result.

LEMMA 7.3. Let

f (x)=
∞∑

k=1

ck xk

be a power series with no constant term that is a simultaneous eigenfunction for the
set of operators {Un}

∞

n=1 with respective eigenvalues {λn}
∞

n=1. If i ≥ 2, then

ci = λi c1,

and thus

f (x)= c1

∞∑
k=1

λk xk . (7.1)

PROOF OF THEOREM 7.1. Let us suppose now that f , as defined in (7.1), is a
hypergeometric function. By Theorem 6.13,

λn = nγb−γa ,

where γb and γa are defined in (6.5). This proves Theorem 7.1. 2

In our formal hypergeometric notation, we see that any simultaneous eigenfunction
must be the polylogarithm

∞∑
k=0

1
ka xk

or the rational function
∞∑

k=0

ka xk,
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where a is a nonnegative integer. In conclusion, we see that if a hypergeometric
function is an eigenfunction for a single operator U j , then it is automatically a
simultaneous eigenfunction for all of the Hecke operators Un , as n varies over all
positive integers. This situation stands in sharp contrast to the space of rational
functions studied recently in [4–6].
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