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Abstract. A classical formula of Legendre gives the p-adic valuation for fac-
torials as a finite sum of values of the floor function. This expression can
be used to produce a formula for the p-adic valuation of n as a finite sum of
periodic functions. An analogous result is established for the p-adic valuation
of the ASM-numbers. This sequence counts the number of alternating sign
matrices.

1. Introduction

Let n ∈ N and p be a prime. The highest power of p that divides n, called the
p-adic valuation of n, is denoted by νp(n). The elementary formula

(1.1) νp(n!) =

∞
∑

j=1

⌊

n

pj

⌋

is a classical result in appears in most texts in number theory. Observe that, for
each fixed value of n, there are only finitely many non-zero terms in (1.1). An
alternative form was given by Legendre [2] in the form

(1.2) νp(n!) =
n − Sp(n)

p − 1
,

where Sp(n) denotes the sum of the digits of n in base p.
The formula (1.1) can be used to express the p-adic valuation of n as

(1.3) νp(n) =

∞
∑

j=1

(⌊

n

pj

⌋

−

⌊

n − 1

pj

⌋)

.

Each summand in (1.3) is a periodic function of period pj .

The goal of this paper is to describe the p-adic valuations of a sequence that
count a famous class of matrices. An alternating sign matrix is an array of 0, 1 and
−1, such that the entries of each row and column add up to 1 and the non-zero
entries of a given row/column alternate. After a fascinating sequence of events, D.
Zeilberger [4] proved that the numbers of such matrices is given by

(1.4) An =

n−1
∏

j=0

(3j + 1)!

(n + j)!
.

In particular, the numbers An are integers: not an obvious fact.
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The story behind this formula and its many combinatorial interpretations are
given in D. Bressoud’s book [1].

The main result presented here is a formula for the p-adic valuation of An similar
to (1.3).

Theorem 1.1. Let n ∈ N and p ≥ 5 be a prime. Define

(1.5) Perj,p(n) =































0 if 0 ≤ n ≤
⌊

pj+1

3

⌋

n −
⌊

p
j+1
3

⌋

if
⌊

p
j+1
3

⌋

+ 1 ≤ n ≤ p
j
−1
2

⌊

2pj+1

3

⌋

− n if pj+1

2
≤ n ≤

⌊

2pj+1

3

⌋

0 if
⌊

2pj+1

3

⌋

+ 1 ≤ n ≤ pj − 1.

Then

(1.6) νp(An) =
∞
∑

j=1

Perj,p

(

n mod pj
)

.

Observations.

1) For a fixed prime p, define r = r(n, p) by the inequalities pr ≤ n < pr+1.
Then n = ⌊log n/ log p⌋. The number n admits a representation n = upr + v, with
1 ≤ u ≤ p − 1 and 0 ≤ v ≤ pr − 1. The index u is given by u = ⌊u/pr⌋.

2) The j-th term in the series (1.6) is a periodic function of period pj .

3) For fixed n ∈ N, the series (1.6) reduces to a finite sum. Indeed, with r as above,

(1.7)

⌊

pr+2 + 1

3

⌋

≥
pr+2 + 1

3
− 1 ≥ pr+1 > n

so the sum ends after j = r + 1.

4) The form of the series (1.6) was found empirically. It would be desirable to
develop a method that gives a series of this type for a large class of sequences. The
goal is to produce an expansion of the form

(1.8) νp(an) =

∞
∑

j=1

αj,nφj,p(n)

where φj,p is a function of period pj . A procedure to determine the coefficients
αj,n directly from the sequence {an} and the functions {φj,p} should be developed.
Moreover, it is required that, for fixed n ∈ N, the series (1.8) contains only finitely
non-vanishing terms.

The proof of the theorem is based on the observation that νp(A1) = 0 and
Perj,p(1) = 0, showing that both sides of (1.6) agree at n = 1 coupled with recur-
rences satisfied by νp(An) and Perj,p(n). These are given by
(1.9)

νp(An) − νp(An−1) =
1

p − 1
(Sp(2n − 2) + Sp(2n − 1) − Sp(3n − 2) − Sp(n − 1))
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and

(1.10) Perj,p(n) − Perj,p(n − 1) =







































0 if 0 ≤ n ≤
⌊

pj+1
3

⌋

1 if
⌊

pj+1

3

⌋

+ 1 ≤ n ≤ pj
−1

2

0 if n = pj+1

2

−1 if pj+3

2
≤ n ≤

⌊

2pj+1

3

⌋

0 if
⌊

2pj+1
3

⌋

+ 1 ≤ n ≤ pj − 1.

The proof shows that the right-hand side of (1.9) matches that of (1.10).
The study of the arithmetic aspects of the sequence An was initiated in [3],

where the case of ν2(An) was considered. It is shown that ν2(An) vanishes precisely
when n is a Jacobstahl number Jm. These numbers are defined by the recurrence
Jm = Jm−1 + 2Jm−2 with initial conditions J0 = 1 and J1 = 1. The main result
is the existence of a well-defined algorithm to produce the graph of ν2(An) on the
interval [Jm, Jm+1] from its value on the two previous intervals [Jm−2, Jm−1] ∪
[Jm−1, Jm]. In the situation considered here, the partial sums of the series (1.6)
give approximations to νp(An).

Section 2 describes data that motivated the main theorem. Section 3 establishes
the recurrence for the valuation of An and Section 4 the corresponding recurrence
for the function Perj,p. Section 5 presents the proof of the main result.

2. An experimental illustration of the main theorem

In this section the procedure employed to find the main result is described in the
case of the valuation νp(An) for p = 5. The first 100 values of ν5(A(n)) are given
below (each row is of length 10)

0 0 0 0 0 0 0 0 1 2
3 4 4 3 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 4 4 3 2
1 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 18 20
22 24 24 22 20 18 16 15 14 13
12 11 10 9 8 7 6 5 4 3
2 1 0 1 2 3 4 4 3 2
1 0 0 0 0 0 0 0 0 0

200 400 600 800 1000
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40

60

80

100

120

Figure 1. The 5-adic valuation of An
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The observation employed to find the main theorem is based on the string

(2.1) 0 0 0 0 0 0 0 0 1 2 3 4 4 3 2 1 0 0 0 0 0 0 0 0 0

and its central role in the function ν2(n). An analytic expression for the string is
given by

(2.2) Per2,5(n) :=



















0 if 0 ≤ n ≤ 8

n − 8 if 9 ≤ n ≤ 12

17 − n if 13 ≤ n ≤ 16

0 if 17 ≤ n ≤ 24

and this is now extended to a periodic function of period 52 by Per2,5(n mod 52).
The function

(2.3) ν5(An) − Per2,5(n mod 52)

has values given by

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18
19 20 20 19 18 17 16 15 14 13
12 11 10 9 8 7 6 5 4 3
2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

This data suggests the function

(2.4) Per3,5(n) :=



















0 if 0 ≤ n ≤ 42

n − 42 if 43 ≤ n ≤ 62

83 − n if 63 ≤ n ≤ 82

0 if 83 ≤ n ≤ 124

and extend Per3,5 to a periodic function of period 53. This empirical procedure
leads to the functions Perj,p(n) defined Theorem 1.1.

3. An analytic formula

For a prime p, introduce the notation

(3.1) fp(j) := νp(j!).

Lemma 3.1. Let p be a prime. Then the p-adic valuation of An satisfies

(3.2) νp(An+1) = νp(An) + fp(3n + 1) + fp(n) − fp(2n) − fp(2n + 1).

Proof. This follows directly by combining the initial value A1 = 1 with the expres-
sion

(3.3) νp(An) =

n−1
∑

j=0

fp(3j + 1) −

n−1
∑

j=0

fp(n + j)

and the corresponding one for νp(An+1). �
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Legendre’s formula (1.2) gives the result of Theorem 3.1 in terms of the function
Sp.

Corollary 3.2. The p-adic valuation of An is given by

(3.4) νp(An) =
1

p − 1





n−1
∑

j=0

Sp(n + j) −

n−1
∑

j=0

Sp(3j + 1)



 .

Summing the recurrence (3.2) and using A1 = 1 we obtain an alternative expres-
sion for the p-adic valuation of An.

Proposition 3.3. The p-adic valuation of An is given by

(3.5) νp(An) =
1

p − 1

n−1
∑

j=1

(Sp(2j) + Sp(2j + 1) − Sp(3j + 1) − Sp(j)) .

This gives a recurrence for the p-adic valuation of An.

Theorem 3.4. The p-adic valuation of An satisfies

νp(An) − νp(An−1) =
1

p − 1
(Sp(2n − 2) + Sp(2n − 1) − Sp(3n − 2) − Sp(n − 1)) .

4. The recurrence for Perj,p(n)

The explicit formulas for Perj,p(n) can be used to give a proof of (1.10). The only
cases that require special attention is when n and n − 1 are on different intervals

of the definition. For instance, if n =
⌊

pj+1
3

⌋

+ 1, then Perj,p(n) = n−
⌊

pj+1
3

⌋

= 1

and Perj,p(n − 1) = 0. The verification of all the cases is elementary.

5. The proof of the main theorem

Introduce the notation

(5.1) L1(n, p) = Sp(2n − 2) + Sp(2n − 1) − Sp(3n − 2) − Sp(n − 1),

with the convention that Sp(x) = 0 if x < 0 and

(5.2) L2(n, p) =

∞
∑

j=1

gj(n, p)

where

(5.3) gj(n, p) =







































0 if 0 ≤ n mod pj ≤
⌊

pj+1

3

⌋

p − 1 if
⌊

pj+1

3

⌋

+ 1 ≤ n mod pj ≤ pj
−1

2

0 if n mod pj = pj+1
2

−(p − 1) if pj+3

2
≤ n mod pj ≤

⌊

2pj+1

3

⌋

0 if
⌊

2pj+1

3

⌋

+ 1 ≤ n mod pj ≤ pj − 1.

The statement of the main theorem is the identity

(5.4) L1(n, p) = L2(n, p) for n ∈ N.

The proof is achieved by induction on the number of digits in the expansion of n
in base p. Write n = upr + v, with 1 ≤ u ≤ p−1 and 0 ≤ v ≤ pr −1. The base case
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shows that L1(n, p) = L2(n, p) for 1 ≤ n ≤ p− 1 and the inductive step is based on
the identities L1(n, p) = L1(v, p) + E(n, p) and L2(n, p) = L2(n, p) + E(n, p), with
the same function E in both cases. This completes the proof.

Observe that, for fixed n ∈ N, the series in (5.2) is actually a finite sum. Terms
with index j ≥ 2 + ⌊log n/ log p⌋ vanish. Thus, if pr ≤ n < pr+1,

(5.5) L2(n, p) =

r+1
∑

j=1

gj(n, p).

The proof of (5.4) is by induction on the number of digits of n in base p. The
basic case is considered first: it deals with n ∈ N that have a single digit; that is,
1 ≤ n ≤ p − 1.

• Base case. Assume that 1 ≤ n ≤ p − 1.

The bound p ≥ 5 implies that for j ≥ 2

(5.6) 1 ≤ n ≤ p − 1 <
p2 − 2

3
≤

⌊

pj + 1

3

⌋

.

It follows that the sum in (5.2) contains a single term. It is required to show that

(5.7) L1(n, p) =































0 if 0 ≤ n ≤
⌊

p+1

3

⌋

p − 1 if
⌊

p+1

3

⌋

+ 1 ≤ n ≤ p−1

2

0 if n = p+1

2

1 − p if p+3

2
≤ n ≤

⌊

2p+1

3

⌋

0 if
⌊

2p+1
3

⌋

+ 1 ≤ n ≤ p − 1.

This identity is verified by considering the position of n in [0, p− 1].

Case 1.1. Observe that 3n − 2 < p is equivalent to n ≤
⌊

p+1
3

⌋

. Under this
conditions the terms 2n− 2, 2n− 1, 3n− 2 and n− 1 have a single digit in base p.
Therefore

(5.8) L1(n, p) = (2n − 2) + (2n − 1) − (3n − 2) − (n − 1) = 0.

Case 1.2. Assume
⌊

p+1

3

⌋

≤ n ≤ p−1

2
. Then 2n − 2 < 2n − 1 ≤ p − 2 and

p ≤ 3n − 2 < 2p. Therefore the numbers 2n − 2, 2n − 1 and n − 1 have a single
digit in base p. The representation of 3n − 2 is 3n − 2 = 1 · p + (3n − 2 − p). It
follows that

Sp(2n−2) = 2n−2, Sp(2n−1) = 2n−1, Sp(n−1) = n−1, and Sp(3n−2) = 3n−p−1.

The identity (5.7) follows from these values.

Case 1.3. If n = p+1

2
, then the terms involved in (5.7) are

Sp(2n−2) = p−1, Sp(2n−1) = 1, Sp(3n−2) = 1+(3n−2p) and Sp(n−1) = n−1.

The identity (5.7) follows from these values.

The remaining cases can be obtained by similar arguments. The proof of (5.7)
is now complete establishing the base case of the main theorem.

• Inductive step. For fixed n ∈ N, recall that r ∈ N is defined by the inequalities
pr ≤ n < pr+1; that is,

(5.9) r =

⌊

log n

log p

⌋

.
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Write n = upr + v, with 1 ≤ u < p and 0 ≤ v ≤ pr − 1. The main step of the proof
is to produce a reduction formula that relates L1(n, p) to L1(v, p).

The next lemma illustrates one case in complete detail. The common assumption
is that n ∈ N satisfies pr ≤ n < pr+1. By convention, Sp(n) = 0 if n < 0.

Lemma 5.1. For n ∈ N,

(5.10) Sp(2n − 2) = Sp(2v − 2) + T1(n, p)

where T1(n, p) is given in the table below.

v u T1(n, p)

v = 0 1 ≤ u ≤ p−1

2
2u − 2 + r(p − 1)

v = 0 p+1

2
≤ u ≤ p − 1 2u − p − 1 + r(p − 1)

1 ≤ v ≤ pr+1
2

1 ≤ u ≤ p−1
2

2u

1 ≤ v ≤ pr+1

2

p+1

2
≤ u ≤ p − 1 2u − p + 1

pr+3
2

≤ v ≤ pr − 1 1 ≤ u ≤ p−3
2

2u

pr+3

2
≤ v ≤ pr − 1 p−1

2
≤ u ≤ p − 1 2u − p + 1

The values of T1(n, p).

Proof. Start with 2n − 2 = 2upr + 2v − 2. The discussion of Sp(2n − 2) is divided
into cases according to 2v − 2.

Case 1: v = 0. Then 2n − 2 = 2upr − 2 = (2u − 1)pr + (pr − 2). The term pr − 2
does not contribute to the power pr and the bounds 1 ≤ 2u− 1 ≤ 2p− 3 yield two
separate cases:

SubCase 1.1: 1 ≤ 2u − 1 ≤ p − 1. In this case Sp(2u − 1) = 2u− 1 and it follows
that

(5.11) Sp(2n − 2) = 2u − 1 + Sp(p
r − 2).

The identity

(5.12) pr − 2 = (p − 2) + (p − 1)p + (p − 1)p2 + · · · (p − 1)pr−1

produces Sp(p
r − 2) = r(p − 1) − 1. Therefore

(5.13) Sp(2n − 2) = 2u − 2 + r(p − 1).

SubCase 1.2: p ≤ 2u − 1 ≤ 2p − 3. The expression

2n− 2 = (2u − 1)pr + (pr − 2)

= pr+1 + (2u − 1 − p)pr + (pr − 2)

gives

Sp(2n − 2) = 1 + (2u − 1 − p) + Sp(p
r − 2)

= (2u − p − 1) + r(p − 1).
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This completes the case v = 0.

Case 2. This considers the situation where 0 < 2v − 2 < pr. Then the repre-
sentation of 2v − 2 in base p does not produce carries to the position of pr. The
discussion of

(5.14) 2n − 2 = 2upr + 2v − 2

is divided, as before, into two subcases according to the value of 2u.

SubCase 2.1.: 1 ≤ 2u ≤ p − 1. Then (5.14) gives

(5.15) Sp(2n − 2) = 2u + Sp(2v − 2).

SubCase 2.2: p ≤ 2u ≤ 2p − 1. Equation (5.14) is now written as

(5.16) 2n − 2 = pr+1 + (2u − p)pr + (2v − 2).

It follows from here that Sp(2u − 2) = 1 + (2u − p) + Sp(2v − 2).

Case 3: the last possibility is pr ≤ 2v − 2 < 2pr. The expression

(5.17) 2n − 2 = (2u + 1)pr + (2v − 2 − pr)

leads to two subcases:

SubCase 3.1: 2u+1 ≤ p− 1. Then 2u+1 < p and Sp(2n− 2) = 2u+1+Sp(2v−
2 − pr). Now, from 2v − 2 = pr + (2v − 2 − pr), it follows that Sp(2v − 2 − pr) =
Sp(2v − 2) − 1. Therefore Sp(2n − 2) = 2u + Sp(2v − 2).

SubCase 3.2: p ≤ 2u + 1 ≤ 2p − 1. Proceeding as before gives Sp(2n − 2) =
2u − p + 1 + Sp(2v − 2). All the cases have now been considered and the proof is
complete. �

The other terms appearing in the expression for L1 have similar reductions.
These are stated next. The proofs are ommitted since they are similar to the one
presented above.

Lemma 5.2. Let n ∈ N. Then Sp(2n − 1) = Sp(2v − 1) + T2(n, p) where T2(n, p)
is given in the table below.

v u T2(n, p)

v = 0 1 ≤ u ≤ p−1

2
2u − 1 + r(p − 1)

v = 0 p+1

2
≤ u ≤ p − 1 2u − p + r(p − 1)

1 ≤ v ≤ pr
−1
2

1 ≤ u ≤ p−1
2

2u

1 ≤ v ≤ pr
−1

2

p+1

2
≤ u ≤ p − 1 2u − p + 1

pr+1
2

≤ v ≤ pr − 1 1 ≤ u ≤ p−3
2

2u

pr+1

2
≤ v ≤ pr − 1 p−1

2
≤ u ≤ p − 1 2u − p + 1

The values of T2(n, p).
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Lemma 5.3. Let n ∈ N. Then Sp(n − 1) = Sp(v − 1) + T3(n, p) where T3(n, p) is
given below.

v T3(n, p)

v = 0 u − 1 + r(p − 1)

1 ≤ v ≤ pr − 1 u

The values of T3(n, p).

Lemma 5.4. Let n ∈ N. Then Sp(3n − 2) = Sp(3v − 2) + T4(n, p) where T4(n, p)
is given in the table below.

v u T4(n, p)

v = 0 2 ≤ 3u − 1 ≤ p − 1 3u − 2 + r(p − 1)

v = 0 p ≤ 3u − 1 ≤ 2p− 1 3u − p − 1 + r(p − 1)

v = 0 2p ≤ 3u − 1 ≤ 3p − 4 3u − 2p + r(p − 1)

1 ≤ 3v − 2 ≤ pr − 1 1 ≤ 3u ≤ p − 1 3u

1 ≤ 3v − 2 ≤ pr − 1 p ≤ 3u ≤ 2p − 1 3u − p + 1

1 ≤ 3v − 2 ≤ pr − 1 2p ≤ 3u ≤ 3p − 3 3u − 2p + 2

pr ≤ 3v − 2 ≤ 2pr − 1 1 ≤ 3u + 1 ≤ p − 1 3u

pr ≤ 3v − 2 ≤ 2pr − 1 p ≤ 3u + 1 ≤ 2p− 1 3u − p + 1

pr ≤ 3v − 2 ≤ 2pr − 1 2p ≤ 3u + 1 ≤ 3p − 2 3u − 2p + 2

2pr ≤ 3v − 2 ≤ 3pr − 1 1 ≤ 3u + 2 ≤ p − 1 3u

2pr ≤ 3v − 2 ≤ 3pr − 1 p ≤ 3u + 2 ≤ 2p− 1 3u − p + 1

2pr ≤ 3v − 2 ≤ 3pr − 1 2p ≤ 3u + 2 ≤ 3p − 1 3u − 2p + 1

The values of T4(n, p).

Corollary 5.5. The information given above, shows that

(5.18) L1(n, p) = L1(v, p) + [T1(n, p) + T2(n, p) − T3(n, p) − T4(n, p)] .

The next step is to obtain a relation between L2(n, p) and L2(v, p).

Recall that r is defined by pr ≤ n < pr+1. It follows that the inequality pr+1 <
⌊

(pj + 1)/3
⌋

holds for j ≥ r + 2, yielding

(5.19) n mod pj = n < pr+1 <
⌊

(pj + 1)/3
⌋

.
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Thus the corresponding term in (5.2) vanishes. For indices 1 ≤ j ≤ r, the relation
n = upr +v, gives n mod pj = v mod pj . Therefore L2(n, p) and L2(v, p) differ only
in the last term. Morever, the bound n < pr+1 implies that n mod pr+1 is simply
n. These observations are recorded in the next proposition.

Proposition 5.6. Let n ∈ N. Recall the definition r = r(n, p) := ⌊log n/ log p⌋, so
that pr ≤ n < pr+1. Then, the identity

(5.20) L2(n, p) = L2(v, p) + gr+1(n, p)

holds, with

(5.21) gr+1(n, p) =







































0 if 0 ≤ n ≤
⌊

pr+1+1

3

⌋

p − 1 if
⌊

pr+1+1

3

⌋

+ 1 ≤ n ≤ pr+1
−1

2

0 if n = pr+1+1
2

−(p − 1) if pr+1+3

2
≤ n ≤

⌊

2pr+1+1

3

⌋

0 if
⌊

2pr+1+1

3

⌋

+ 1 ≤ n ≤ pr+1 − 1.

The next result completes the proof of the main theorem.

Theorem 5.7. With the notations established above

(5.22) T1(n, p) + T2(n, p) − T3(n, p) − T4(n, p) = gr+1(n, p).

Proof. The proof is presented in detail for the case
⌊

(pr+1 + 1)/3
⌋

+ 1 ≤ n ≤

(pr+1 − 1)/2. The other cases are similar.
From the representation n = upr +v and the bounds considered above, it follows

that

(5.23) 0 ≤ v ≤ pr − 1 and p ≤ 3u + Spill(3v − 2) ≤ 3
2
(p − 1).

Assume that v > 0. The case v = 0 can be treated by similar methods. The spill
of 3v − 2 is defined as the contribution of 3v − 2 to the power pr in its expansion
on base p. The bounds −2 ≤ 3v − 2 < 3pr shows that the spill is between 0 and 2.
The details are given for the case where the spill is 0. The analysis for the case of
spill 1 and 2 is analogous.

If the spill is 0, then 0 ≤ 3v−2 ≤ pr−1 and p ≤ 3u ≤ 2p−1. The table of values
for T4 gives T4(n, p) = 3u− p + 1. The bound n ≤ 1

2
(pr+1 − 1) = p−1

2
pr + 1

2
(pr − 1)

imply that u ≤ p−1

2
. Since the spill of 3v − 2 is 0 it follows that 3v ≤ pr + 1. Now,

p ≥ 5, therefore v ≤ 1
3
(pr + 1) ≤ 1

2
(pr − 1). This gives T1(n, p) = 2u, T2(n, p) = 2u

and T3(n, p) = u. The result is

T1(n, p) + T2(n, p) − T3(n, p) − T4(n, p) = 2u + 2u − [u + 3u − p + 1] = p − 1.

This is the value of gr+1(n, p). The remaining cases follow the same pattern. �

The main theorem has now been established.
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