
BROKEN BRACELETS, MOLIEN SERIES, PARAFFIN WAX
AND AN ELLIPTIC CURVE OF CONDUCTOR 48

TEWODROS AMDEBERHAN, MAḢIR BİLEN CAN, AND VICTOR H. MOLL

Abstract. Certain enumeration questions arising from the study of bi-
nary necklaces are solved. Applications and interpretations are provided.

1. Introduction

A jeweler is asked to design a necklace consisting of a chain with n place-
ments fork pieces of diamond. The client ask for one group ofr diamonds
to be placed next to each other and the remaining diamonds areto be iso-
lated, that is, each one is mounted so that the two adjacent places are left
empty. These special diamonds are called themedallionof the necklace.
Figure 1 shows a necklace of length 20, with a medallion of length 5 and
four extra diamonds.

Figure 1. A necklace with a medallion.

Figure 2. A configuration.
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Figure 3. A forbidden configuration.

A configurationis a broken necklace resulting from one of ther + 1 cuts
to the left, right or in between the medallion. Figure 2 showsa configuration
and Figure 3 depicts a forbidden cut.

Labeln vertices as{1, 2, · · · ,n− 1, n}. Theneighborsof the vertexi are
i − 1 andi + 1 for 2≤ i ≤ n− 1; the single vertex 2 fori = 1 and the single
vertexn for i = n−1. Configurations consist of a linear array ofn vertices,k
of which aremarkedor painted red. The marked vertices are eitherisolated,
that is, its neighbors are not marked orconnected, that is, the sequence of
vertices{i, i +1, i +2, · · · , j} are all marked. In the latter case, it must be the
case thati = 1 or j = n; that is, connected marked vertices contain 1 orn.

Question 1. Determine the numberZk(n) of configurations up to symmetry.

The problem above, sans restriction, may be interpreted as abinary neck-
lace: a periodic chain made of two kinds of beads. The classical result on
counting all binary necklaces withn beads is given by MacMahon formula

(1.1) N(n) =
1
n

∑

d|n
ϕ(d)2n/d,

where the summation runs through all divisorsd of n, andϕ(d) is theEuler
totientfunction counting the numbers 1, 2, . . . , d relatively prime tod.

A simple parity distinction inn surprisingly isolatesallowed from for-
biddennecklaces in supersymmetry [5]. The restrictions arise from Pauli
exclusion principle, a result of anti-symmetry of planar states. In this con-
text, a necklace is called forbidden if and only if it hasZk symmetry fork
even andF/k is odd. Here,F is the number of fermionic quanta. The state-
ment in [5] is that the number of allowed and forbidden necklaces is given,
respectively, by

(1.2) Nallowed(n) =
1
n

∑

d|n
d odd

ϕ(d)2n/d,

and

(1.3) Nf orbidden(n) =
1
n

∑

d|n
d even

ϕ(d)2n/d.

This enumeration under Pauli principle is closely related to our initial ques-
tion of the forbidden necklace problem.
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2. The number of configurations

In this section the counting problem from the Introduction is rephrased
and solved. The current format as well as the original formulation will be
used interchangeably:

determine the number Zk(n) of painting k points in red from a linear array
of n of them, with the condition that consecutive red points can only appear
at the beginning or at end of the array. Moreover, arrays thatare reflections
of each other should be counted only once.

In order to determine the number of configurationsZk(n) it is convenient
to begin with a simpler count.

Proposition 2.1. Let fk(n) be the number of arrangements ofn vertices
with k marked vertices, no consecutive marked ones where reflections are
not identified. Then

(2.1) fk(n) =

(

n− k+ 1
k

)

.

Proof. Each such arrangement can be obtained by placing thek marked
vertices and choosingk − 1 places to separate them. The count is obtained
by eliminating the separating spaces. �

Reduced configurations. The next step is to count those configurations ob-
tained by cutting the necklace exactly on one side of the medallion. These
produce linear arrays where clustered vertices appear either at the beginning
or at the end of the array. Invoking symmetry, only those withthe medallion
at the left will be considered. Letβk(n) be the number of such arrays.

Theorem 2.8 provides an expression for the functionβk(n) and Theorem
2.16 provides a formula forZk(n).

Definition 2.1. Let gk(n) be the number of arrangements ofn vertices with
k marked points, no two being consecutively marked and identifying sym-
metric pairs.

Example 2.2. A numerical reinterpretation ofgk(n) is given here. Take for
examplen = 4 andk = 2. From the pairs{12, 13, 14, 23, 24, 34} eliminate
{12, 23, 34} for being consecutive somewhere. This leaves{13, 14, 24}.
The pairs are now considered modulo 5, so that 24 is identifiedwith 13 (the
same as 31). The final allowed list is{13, 14} showing thatg2(4) = 2.

Theorem 2.3.The functionβk(n) satisfies

(2.2) βk(n) = gk(n) +
k

∑

r=2

fk−r(n− r − 1).
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Proof. Separate the different configurations into two groups: those with no
consecutive marked points and those with at least two consecutive ones that
are marked. The first type is counted bygk(n). Observe that if a certain
arrangement has two or more adjacent marked vertices, then the remaining
marked ones have no restrictions due to symmetry. In other words, reflec-
tion only imposes limitations if the configuration has no adjacent marked
vertices in it.

The number of possible consecutive marked points is given bythe size
of the medallion. If this size isr, with 2 ≤ r ≤ k, then dropr + 1 places
from the configuration (r for the medallion and one more at the right-end
of it). This leaves a total ofn − r + 1 spaces where to placek − r marked
vertices. �

The next step is the enumeration ofgk(n). This group is divided into
three disjoint subclasses, those with (1) both ends are marked, (2) both ends
are unmarked and (3) only the left end is marked. In the first class drop
the vertices at positions 1, 2, n − 1 andn and observe that the remaining
n− 4 vertices havek− 2 marked ones and no further restrictions. Therefore
there aregk−2(n−4) such arrangements. Similarly, the class (2) hasgk(n−2)
elements. Finally, in class (3), drop the first two vertices and the last one that
is not marked. The remainingn− 3 vertices have no symmetry restriction.
The latter are counted byfk−1(n−3) =

(

n−k−1
k−1

)

such arrangements. This gives
the relation

(2.3) gk(n) = gk(n− 2)+ gk−2(n− 4)+

(

n− k− 1
k− 1

)

.

Theorem 2.4.Let n = m+ 2k− 1 and define ¯gk(m) := gk(m+ 2k− 1). Then
ḡk satisfies

(2.4) ḡk(m) = ḡk−2(m) + ḡk(m− 2)+

(

m+ k− 2
k− 1

)

.

Proof. Observe that any valid arrangement counted bygk(n) must satisfy
n ≥ 2k− 1. The rest is elementary. �

The next result was obtained from experimental data generated by (2.4).

Example 2.5.The functionḡk(m) is computed for 0≤ m≤ 3:

(2.5) ḡk(0) = 1, ḡk(1) =

⌊

k+ 2
2

⌋

, ḡk(2) =

⌊

(k+ 2)2

4

⌋

and

(2.6) ḡk(3) =
k

∑

j=0

(−1)k− j















j
∑

i=0

⌊

j + 2
2

⌋

+

(

j + 1
2

)















.
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Definition 2.6. The relation (2.4) attains a cleaner form by introducing the
necklace binomial coefficients

(2.7)

(

t
k

)

N

:=















gk(t + k− 1) for 0≤ k ≤ t

0 otherwise.

The next result is a restatement of Theorem 2.4.

Corollary 2.7. The necklace binomial coefficient satisfies the Pascal-type
relation

(2.8)

(

t
k

)

N

=

(

t − 2
k− 2

)

N

+

(

t − 2
k− 1

)

+

(

t − 2
k

)

N

.

The evaluation of the necklace binomial coefficients is now easy to guess
and establish using (2.8).

Theorem 2.8.For 0≤ k ≤ t, it holds that

(2.9)

(

t
k

)

N

=
1
2















(

t
k

)

for t even andk odd,
(

t
k

)

+

(

⌊t/2⌋
⌊k/2⌋

)

elsewhere.

Moreover,

(2.10) βk(t) =

(

t − k+ 1
k

)

N

+

k
∑

r=2

(

t − k
r − 2

)

.

Table 2 shows the values of the necklace coefficients:

t/k 0 1 2 3 4 5 6 7 8 9 10
1 1 1
2 1 1 1
3 1 2 2 1
4 1 2 4 1 1
5 1 3 6 6 3 1
6 1 3 9 10 9 3 1
7 1 4 12 19 19 12 4 1
8 1 4 16 28 38 28 16 4 1
9 1 5 20 44 66 66 44 20 5 1
10 1 5 25 60 110 126 110 60 25 5 1

A series of elementary consequences of (2.9) are presented next.

Corollary 2.9. The row-sum identity

(2.11)
t

∑

k=0

(

t
k

)

N

= 2t−1
+ 2⌊(t−1)/2⌋

holds.



6 T. AMDEBERHAN, MAHİR BİLEN CAN, AND VICTOR H. MOLL

The next statements employ theFibonacci numbers Fn, defined by the
relationFn = Fn−1+ Fn−2 with initial conditionsF0 = F1 = 1 and theLucas
numbers Ln defined by the same recurrence and with initial conditionsL0 =

2, L1 = 1.

Corollary 2.10. Let Fn andLn as above. Denotẽt := ⌊t/2⌋ + 2 + (−1)t+1.
Then

(2.12)
t

∑

k=0

βk(t) =
1
2

(Lt+2 + Ft̃) − 1.

Corollary 2.11. The generating functions
t

∑

k=0

(

t
k

)

N

yk
=

1
2

(1+ y)t
+

1
2

(1+ y2)t/2(1+ y)t mod 2,(2.13)

∑

t≥0

(

t
k

)

N

xt
=

(1+ x)⌊(k+1)/2⌋
+ (1− x)⌊(k+1)/2⌋

2(1− x)⌈(k+1)/2⌉(1− x2)⌊(k+1)/2⌋ ,(2.14)

and

(2.15)
∑

t,k≥0

(

t
k

)

N

xtyk
=

1
2(1− x− y)

+
2+ x

2(1− x2 − y)
,

hold.

Corollary 2.12. The necklace binomial coefficients are symmetric, that is,

(2.16)

(

t
k

)

N

=

(

t
t − k

)

N

for 0 ≤ k ≤ t.

Corollary 2.13. The functionḡ is symmetric; that is,

(2.17) ḡk(m) = ḡm(k).

Proof. This is a restatement of (2.16). An alternative proof of the symme-
try (2.17) is obtained from the recurrence (2.4). Simply express it in two
different forms

ḡk(m) − ḡk−2(m) = ḡk(m− 2)+

(

m+ k− 2
k− 1

)

,(2.18)

ḡk(m) − ḡk(m− 2) = ḡk−2(m) +

(

m+ k− 2
k− 1

)

.

The result now follows by induction and the symmetry of the binomial co-
efficients. �

The next theorem provides a combinatorial proof of the symmetry rule
(2.17).
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Theorem 2.14.The symmetry ¯gk(m) = ḡm(k) holds.

Proof. The assertion amounts togk(m+ 2k − 1) = gm(k + 2m− 1). Take a
linear array ofn nodes and its 2-coloring (redr or whitew). By definition,
gk(n) enumerates all possible ways of coloringk nodes in red with the rule:
(1) no two reds are consecutive; (2) two such arrays are equivalent if they
relate by reflection. According to (1), it must be that the first k− 1 reds are
each followed by white. Thus, any selection ofk reds can be interpreted as
choosing the (k−1) pairsrw and a freer. For each pairrw, trim-off thew as
well as its sitting node. That means, whenn = m+ 2k− 1 then the number
of nodes reduces tom+ k and hencegk(m+ 2k − 1) induces an equivalent
counting of (m+ k)-nodes of whichk are red (note: rule (1) is absent but
rule (2) stays). Similarly,gm(k + 2m − 1) tantamount to the counting of
(m+ k)-nodes of whichmare white. But, it is obvious that coloringk nodes
red on an (m+ k)-array is equivalent to the coloring ofm nodes in white.
This gives the required bijection. The proof is complete. �

Example 2.15.This example demonstrates the above proof; i.e.gk(m+2k−
1) = gm(k + 2m− 1). Takem = 2 andk = 3. Then,g3(7) andg2(6) count
respectively the cardinality of sets

A := {rwrwrww, rwrwwrw, rwrwwwr, rwwrwrw, rwwrwwr,wrwrwrw}

and

B : {rwrwww, rwwrww,wrwrww, rwwwrw,wrrrrw , rwwwwr}.

The setB after color-swapping turns to

B1 := {wrwrrr ,wrrwrr , rwrwrr ,wrrrwr , rwrrwr ,wrrrrw }.

The two setsA andB1 are now mapped (w-trimmed andr-trimmed, respec-
tively) to

A1 := {rrrww, rrwrw, rrwwr, rwrrw, rwrwr,wrrrw},

and

B11 := {wwrrr,wrwrr, rrwrr ,wrrwr, rwrwr,wrrrw}.
The bijection betweenA1 andB11 is clearly exposed; that is, reflectB11

to get the set

B111 := {rrrww, rrwrw, rrwrr , rwrrw, rwrwr,wrrrw}.

The full counting solution to the configuration problem is presented next.

Theorem 2.16.The total numberZk(t) of possible linear configurations of
k diamonds (with or without a medallion) ont nodes is given by
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Zk(t) =
∑

j≥0

(

t − k− 1
k− 2 j

)

N

+

∑

j≥0

⌊

j + 1
2

⌋ (

t − k− 1
k− j

)

.

Proof. Catalog the diamonds according to whether they are: (1) an equal
number of clusters; (2) unequal number of clustered diamonds on the two
end-nodes. However many are remaining to be mounted in the interior, case
(1) is affected by the reflection but those in case (2) are not. It follows that
the first case is enumerated by the functiongk(t) (equivalently, by necklace
binomials) while the functionfk(t) is the right choice for the second cate-
gory. The details are omitted. �

The necklace coefficients are given as Entry A005994 in Neil Sloane
Encyclopedia of Integer Sequences. The reader will find there information
on the connection between

(

t
k

)

N
and the so-calledparaffin numbers. The

chemist S. M. Losanitsch studied in [4] the so-calledalkane numbers(called
here the necklace numbers) in his investigation of symmetries manifested
by rows of paraffin (hydrocarbons). In the molecule of analkane (also
known as a paraffin), for n carbon atoms there are 2n + 2 hydrogen atoms
(i.e. the formCnH2n+2). Each carbon atomC is linked to four other atoms
(eitherC of H); each hydrogen atom is joined to one carbon atom. The
figures in the Appendix show all possible alkane bonds for 1≤ n ≤ 5.
There are 1, 1, 1, 2, 3 possible alignments, respectively.

A geometric interpretation. Given a finite groupG, it is a classical prob-
lem to find the generators of the ring of polynomial invariants under the ac-
tion of G. TheMolien series M(z; G) is the generating function that counts
the number of linearly independent homogeneous polynomials of a given
total degreed that are invariants forG. It is given by

(2.19) M(z; G) =
1
|G|

∑

g∈G

1
det(I − zg)

=

∞
∑

i=0

biz
i .

Thus, the coefficientsbi record the number of linearly independent polyno-
mials of total degreei.

Now assumek = 2m− 1. Then (2.14) becomes

(2.20)
∑

i≥0

(

i + 2m− 1
2m− 1

)

N

zi
=

1
2

1
(1− z)2m

+
1
2

1
(1− z2)m

.

This is recognized as

(2.21)
1
2

1
(1− z)2m

+
1
2

1
(1− z2)m

=
1
|G|

∑

g∈G

1
det(12m− zg)

,
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whereG is the symmetric groupS2 and the summation runs through the 2m-
dimensional group representation of the elementsg in GL2m(C). The argu-
ment below shows that the series is indeed a Molien series forthe ring of in-
variants under the action ofS2. More specifically, the ring of invariants un-
der consideration isC[X; Y]∼2 whereX = (x1, . . . , xm) andY = (y1, . . . , ym).
The action is given byxl 7→ yl for l = 1, . . . ,n.

Letσ be the matrixσ =

(

0 1
1 0

)

and letπ be the tensor productπ = σ⊗1m

resulting in a 2m× 2mmatrix which has four blocks of sizem×mwith the
off-diagonal blocks being the identity matrix and the diagonals blocks being
zero. The matrix group generated byπ in GL2m is S2. Consequently,

(2.22) det(12m− zπ2) = det(12m− z12m) = (1− z)2m

and det(12m − zπ) = det(ρ ⊗ 12m), with ρ =

(

1 −z
−z 1

)

. Since det(A ⊗ B) =

det(A)m det(B)m, it must be that det(12m− zπ) = (1− z2)m.

These observations are summarized in the next statement.

Theorem 2.17.Consider the action ofZ2 onC[x1, · · · , xm, y1, · · · , ym] given
by xl 7→ yl. Then, the number of linearly independent invariant polynomials
of total degreei is given by the necklace binomial coefficient

(

i+2m−1
2m−1

)

N
.

3. The necklace polynomials

In this section we discuss properties of thenecklace polynomialsdefined
by

(3.1) Nt(y) =
t

∑

k=0

(

t
k

)

N

yk.

Theorem 3.1.The necklace polynomial is given by

(3.2) Nt(y) =
1
2

(1+ y)t
+

1
2

(1+ y2)⌊t/2⌋(1+ y)t mod 2.

Proof. Use the binomial expansion and compare with (2.9). �
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Example 3.2.The first few values ofNt(y) are given by

N1(y) = 1+ y

N2(y) = 1+ y+ y2

N3(y) = N1(y)N2(y)

N4(y) = 1+ 2y+ 4y2
+ 2y3

+ y4

N5(y) = N1(y)N4(y)

N6(y) = N2(y)(1+ 2y+ 6y2
+ 2y3

+ y4)

N7(y) = N1(y)N2(y)(1+ 2y+ 6y2
+ 2y3

+ y4)

N8(y) = 1+ 4y+ 16y2
+ 28y3

+ 38y4
+ 28y5

+ 16y6
+ 4y7

+ y8.

The sequence of necklace polynomials have some interestingdivisibility
properties. The results presented below began with the empirical observa-
tion that, fort odd,Nt(y) = N1(t)Nt−1(y).

Corollary 3.3. Let j ∈ N andt ∈ N. ThenN j(y) dividesN(2t−1) j(y).

Proof. This is a direct consequence of the explicit formula given inTheo-
rem 3.1. �

Problem 3.4. Prove thatN2 j (y) is irreducible.

Many polynomials appearing in Combinatorics areunimodal; that is,
there is an indexn∗ such that the coefficients increase up ton∗ and decrease
from that point on. A stronger property is that oflogconcavity: the polyno-
mial P(x) =

∑n
k=0 akxk is logconcave ifa2

k − ak−1ak+1 ≥ 0 for 1≤ k ≤ n− 1.
The reader is referred to [2, 7] for surveys on these issues.

The explicit expression (2.9) gives an elementary proof of the next state-
ment.

Theorem 3.5.The necklace binomial coefficients are unimodal.

Proof. The inequality

(3.3)

(

t
k

)

N

≤
(

t
k+ 1

)

N

for 0 ≤ k ≤ ⌊t/2⌋ and the symmetry of the necklace binomial coefficients,
established in Theorem 2.12, give the result. �

Theorem 3.6.The polynomialNt(y) is logconcave.

Proof. Use (2.9) and separate cases according to the parity oft andk. �

Problem 3.7. Let L{an} := {a2
n − an−1an+1} be an operator defined on non-

negative sequences. Therefore, a polynomialP(x) is logconcave ifL maps
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its coefficients into a nonnegative sequence. The polynomialP is calledk-
logconcave ifL( j)(P) is nonnegative for 0≤ j ≤ k. A sequence is called
infinitely logconcaveif it is k-logconcave for everyk ∈ N.

A recent result of P. Brändén [1] proves that if a polynomialP has only
real and negative zeros, then the sequence of its coefficients is infinitely
logconcave. The sequence of binomial coefficients satisfies this property.

The question proposed here is to prove thatNt(y) is infinitely logconcave.

There is a well-established connection between unimodality questions
and the location of the zeros of a polynomial. For example, a polynomial
with all its zeros real and negative is logconcave [8]. This motivated the
computation of the zeros ofNt(y). Figure 4 shows the zeros ofN100(y).

-1.0 -0.8 -0.6 -0.4 -0.2

-4

-2

2

4

Figure 4. The zeros of the necklace polynomialN100(y).

Theorem 3.8.Let y = a+ ib be a root of the necklace polynomialNt(y) = 0.
For a , −1, define the new coordinatesu = 1/(1 + a) andv = b/(1 + a).
Then (u, v) is on the elliptic curvev2

= u3 − 2u2
+ 2u− 1.

Proof. Any zero ofNt(y) satisfies

(3.4) (1+ y)t
= −















(1+ y2)t/2 if t is even

(1+ y2)(t−1)/2(1+ y) if t is odd.

Taking the complex modulus produces|1 + y|4 = |1 + y2|2. In terms of
y = a+ ib this equation becomes

(3.5) b2
= −a(a2

+ a+ 1)
1+ a

.
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The transformation 1+ a = 1/u andb = v/u leads to equation

(3.6) v2
= u3 − 2u2

+ 2u− 1 = (u− 1)(u2 − u+ 1),

as claimed. �

Note 3.9. The collection of points on an elliptic curveE, such as (3.6), has
been the subject of research since the 18th century. The general equation of
such a curve is written as

(3.7) y2
+ a1y = x3

+ a2x2
+ a4x+ a6

and if x, y ∈ P(C2), the complex projective space, thenE is a torus. The
addition of this torus is expressed on the cubic in a geometric form: to add
P1 andP2, form the line joining them and defineP3 := P1⊕P2 as the reflec-
tion of the third point of intersection of this line with the cubic curve. This
addition rule is expressed in coordinate form: the general formula given in
[6]. Let P1 = (x1, y1) andP2 = (x2, y2). Define

λ =















y2−y1

x2−x1
if x2 , x1

3x2
1−4x1+2

2y1
if x2 = x1,

and ν =















y1x2−y2x1

x2−x1
if x2 , x1

−x3
1+2x1−2

2y1
if x2 = x1.

TheP3 = (x3, y3) is given by

x3 = λ
2
+ 2− x1 − x2 andy3 = −λx3 − ν.

Aside from the pointP0 = (1,0), the table below shows a collection of
points on the curveE obtained using Mathematica. The notation

γ =

√

3+ 2
√

3, δ =

√√
5− 2, τ =

√

24+ 14
√

3, σ = 2
√

2(11+ 5
√

5),

ω1 = 2+
√

3, ω2 = 2(3+
√

5), ω3 = 3+ 2
√

3

is employed.

The notationnecklace pointrefers to a point (u, v) on the elliptic curve
E that is produced by the zeroy = a+ ib of a necklace polynomial via the
transformation 1+ a = 1/u andb = v/u. The addition of two necklace
points sometimes yields another one. For instance,P1⊕P1 = P0 and 2P3 :=
P3 ⊕ P3 = P2. On the other hand, the set of necklace points is not closed
under addition:

P1⊕P7 =
1
2

(

7+ 3
√

5+

√

66+ 30
√

5

)

− I
2

(

21+ 9
√

5+
√

30(29+ 13
√

5)

)

.

The minimal polynomial for this number isy8 − 28y7
+ 1948y6 − 5236y5

+

4858y4−3988y3
+7156y2−6040y+2245. This polynomial does not divide

a Nt(y) for 1 ≤ t ≤ 1000. It is conjectured that it never does.
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Name u v Root ofNt(y) = 0
P1 2 −

√
3 2

P2 2 +
√

3 2
P3 ω1 − γ ω3 − τ 6
P4 ω1 − γ −ω3 + τ 6
P5 ω1 + γ −ω3 − τ 6
P6 ω1 + γ ω3 + τ 6
P7 (1+ δ)ω2 ω2 + σ 4
P8 (1+ δ)ω2 −(ω2 + σ) 4
P9 (1− δ)ω2 ω2 − σ 4
P10 (1− δ)ω2 −(ω2 − σ) 4
Table 1. Some points on the elliptic curveE.

Note 3.10.Equation (3.5) shows that any root ofNt(y) must satisfy−1 ≤
Rey ≤ 0. Observe thaty = 0 is never a root.

Note 3.11.The change of variablesu 7→ u+ 1 transforms the curveE into
the formv2

= u3
+ u2

+ u. This curve appears as 48a4 in Cremona’s table
of elliptic curves, available at
http://www.ma.utexas.edu/users/tornaria/cnt/cremona.html?

conductor=48

The discriminant of the cubic is negative. Therefore the curve has a single
real component. This is seen in Figure 4.

Problem 3.12. The zeros of the polynomialNt(y) are algebraic numbers
lying on the elliptic curve (3.5). The points on that curve with algebraic
coordinates form a subgroupA under the addition described above. The
question is to characterize inA the set coming from necklace points.

4. Neckalces and their progeny

This section explores the enumeration of certain special necklaces and
their generating functions. The latter is applied to the computation of some
Molien series. Acircuit graph is a graph consisting ofn vertices placed on
a circle with some of them colored by red.

Proposition 4.1. The total number ofn-bead (circular) binary necklaces on
which a red-red string is forbidden is given by

(4.1) W(n) =
1
n

∑

d|n
ϕ

(n
d

)

Ld.

Proof. A standard application of Burnside’s lemma. �
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Example 4.2.For n = p prime, formula (4.1) gives

(4.2) W(p) =
(p− 1)+ Lp

p
.

It follows thatLp ≡ 1 modp. Similarly, for n = p2, (4.1) gives

(4.3) p2W(p2) = Lp2 + (p− 1)Lp + p(p− 1).

It follows that

(4.4) Lp2 ≡ Lp + 1 modp2.

These are well-known results [3].

A more distinguishing count is provided by definingWk(n) to be the
number ofn-bead (circular) binary necklaces on which a red-red string
is forbidden, consisting of exactlyk red beads. In order to accomodate
the possibility thatk = 0, we defineW0(n) := 1 (this is justifiable since
W0(n) = 1

n

∑

d|nϕ(d) = 1) .

Theorem 4.3.The functionWk(n) is given by

(4.5) Wk(n) =
1

n− k

∑

d|n,k
ϕ(d)

(n
d −

k
d

k
d

)

.

Proof. It follows directly from Burnside’s lemma. �

Corollary 4.4. The identity

(4.6)
⌊n/2⌋
∑

k=0

1
n− k

∑

d|n,k
ϕ(d)

(n
d −

k
d

k
d

)

=
1
n

∑

d|n
ϕ(d)Ln/d

holds.

Proof. The assertion follows from the combinatorial identity

(4.7)
∑

k≥0

Wk(n) =W(n).

�

Theorem 4.5.Forn ∈ N define

(4.8) Vd(x) =













1−
√

1+ 4x
2













d

+













1+
√

1+ 4x
2













d

.

Then the row-sum generating function ofWk(n) is given by

(4.9) Fn(x) :=
⌊n/2⌋
∑

k=0

Wk(n)xk
=

1
n

∑

d|n
ϕ

(n
d

)

Vd

(

xn/d
)

.
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Proof. The proof is based on the identity

(4.10)
1
m

Vm(x) =
⌊m/2⌋
∑

k=0

1
m− k

(

m− k
k

)

xk,

which is easy to verify. This is applied to
⌊n/2⌋
∑

k=0

Wk(n)xk
=

∑

d|n
ϕ(d)

∑

k≥0

1
n− dk

(n
d − k

k

)

xdk

=

∑

d|n

ϕ(d)
d

∑

k≥0

1
n
d − k

(n
d − k

k

)

xdk.

The result follows from here. �

Example 4.6.For p prime, the polynomialFp(x), defined in (4.9), is given
by

Fp(x) =
⌊p/2⌋
∑

k=0

1
p− k

(

p− k
k

)

xk

=
(p− 1)2p(1−

√
1+ 4x)p

+ (1+
√

1+ 4x)p

p · 2p
.

Example 4.7.Putn = 3k+ 1 in (4.3) to obtainWk(3k+ 1) = 1
2k+1

(

2k+1
k

)

, the
Catalan numbers.

Example 4.8.For n ∈ N, and withLn denoting the Lucas number,

(4.11)
⌊n/2⌋
∑

k=0

1
n− k

(

n− k
k

)

=
1
n

Ln.

This is obtained from settingx = 1 in (4.9).

Theorem 4.9. The ordinary generating function for the diagonals ofWk(n)
is given by

(4.12)
∑

n≥k

Wk(n)xn
=

1
k

∑

d|k

ϕ(d)x2k

(1− xd)k/d
.

In its lowest terms, the denominator of this rational function takes the form

(4.13)
∏

d|k
(1− xd)ϕ(k/d)

=

∏

d|k
Φd(x)k/d,

whereΦd(x) is thed-th cyclotomic polynomial given in terms of the Mobius
µ-function asΦd(x) =

∏

c|d(1− xd/c)µ(x).
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Proof. The result follows from the Taylor series expansion

(4.14)
x2m

m(1− x)m
=

∑

j≥m

1
j −m

(

j −m
m

)

x j .

�

A geometric interpretation. The above generating function
∑

n≥k Wk(n)xn

is the Molien seriesW(x;Zk) for the ring of invariantsC[X]Zk whereX =
(x1, . . . , xk). In this case, the groupZk is identified with itsk-dimensional
group representation inGLk(C). More concretely,Zk � 〈ek〉 whereek is the
k × k permutation matrix such thate[i, j] = 1 if j = i + 1;e[k,1] = 1 and
e[i, j] = 0, otherwise. LetRP(d) be the set of positive integers less thand
and relatively prime tod. Partition the integer interval [k] into the disjoint
union

(4.15) [k] = {1, 2, . . . , k} =
⋃

d|k

k
d

RP(d).

This relation is reminiscent of the well-known identityk =
∑

d|k ϕ(d). Then,

W(x;Zk) =
1
|Zk|

k
∑

j=1

1

det(1k − xej
k)

=
1
k

∑

d|k

ϕ(d)

det(1k − xek/d
k )

=
1
k

∑

d|k

ϕ(d)
det((1d − xed) ⊗ 1k/d)

=
1
k

∑

d|k

ϕ(d)
det((1d − xed)k/d

=
1
k

∑

d|k

ϕ(d)
(1− xd)k/d

.

These findings are stated in the next result.

Proposition 4.10.The number of linearly independent homogeneous poly-
nomials, of total degreen, for the ring of invariantsC[X]Zk equals

1
n+ k

∑

d|n,k
ϕ(d)

(n
d +

k
d

k
d

)

.
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5. A sample of the computation of zeros

Motivated by the interesting properties of the zeros of necklace polyno-
mials, this section presents some computational graphics showing the ze-
ros of the polynomialsFn(x). Figure 5 shows the location of the roots of
F1000(x).

-8 -6 -4 -2 2 4

-3

-2

-1

1

2

3

Figure 5. The zeros ofF1000(x).
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The next four figures show a selection of regions from the set of the roots
of all the polynomialsFn(x) for 3 ≤ n ≤ 1000. The caption indicates the
range depicted.

-10 -8 -6 -4 -2 2

-2

-1

1

2

Figure 6. [−10,2] × [−2,2].

-2.0 -1.5 -1.0 -0.5

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 7. [−2,0.2] × [−0.6,0.6].

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6

Figure 8. [−1.4,−0.6] × [−0.5,0.5].

-50 -40 -30 -20 -10

-6

-4

-2

2

4

6

Figure 9. [−50,5] × [−6,6].

The interesting structure depicted in figures 6 to 9 will be explored in
future work.
Acknowledgments. The authors wish to thank J. Silverman for providing
information on the elliptic curve mentioned in the title. The third author
was partially funded by NSF-DMS 0070567.
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Appendix A. Rows of paraffin

The figures show all possible alkane bonds (paraffin) CnH2n+2 for n =
1, 2, 3, 4, 5.
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n = 5 : C5H12.
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